Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 33

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  microfacies
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
EN
The purpose ofpetrographic studies was to describe dolomite deposits of the Main Dolomite (Ca2) that make up a small carbonate platform on the Gorzów Wielkopolski Block (western Poland). This structure contains a gas pool formed as a result ut microfacies development and diagenetic history of the Ca2 deposits. Vadoid packstones and grainstones predominate in borehole Cychry 4, whereas the deposits from borehole Cychry 2 are developed primarily as peloid and oncoid packstones and grainstones /and bioclastic packstones in the upper part of the profile). Diagenetic processes, responsible for formation and preservation of good reservoir properties, intensively overprinted the original features of sediments. The lack or presence of anhydrite cements is the most important effect of diagenesis.
EN
Upper Jurassic limestones exposed in the Będkowska Valley form an extensive complex of carbonate buildups of microbolite-sponge and microbolite-Tubiphytes reef-like bioherms, in which the main rock-building material are packstone and grainstone bound by microbolite structures. Horizontal discontinuity surfaces locally found in massive limestones are of sedimentary origin and are related to sediment gravity flows from the higher parts of the buildups. Two basic morphological types of carbonate buildups are distinguished in the vertical sequence of studied sediments: (i) one or a couple of large buildups forming a continuous biolitite cover with one type of sediment prevailing over a wide area in the lower part and passing upwards to (ii) numerous small buildups separated by depressions filled with packstone and grainstone formed from erosion of the buildups. The smaller, younger buildups were subject to early cementation which led to formation of extensive constructions.
PL
Górnojurajskie wapienie Doliny Będkowskiej tworzą rozległy kompleks budowli węglanowych typu bioherm mikrobolitowo-gąbkowych i mikrobolitowo-Tubiphytesowych bioherm rafopodobnych, w których podstawową rolę skałotwórczą odgrywają ziarnity wiązane przez struktury mikrobolitowe. Poziome powierzchnie nieciągłości obserwowane niekiedy w wapieniach masywnych posiadają genezę sedymentacyjną związaną z drobnodetrytycznymi spływami z wyższych partii budowli. W badanych osadach można wydzielić dwa podstawowe typy morfologiczne budowli: (i) rozwinięte jako jedna lub kilka dużych budowli tworzących zwartą pokrywę biolitytową charakteryzującą się szerokim rozprzestrzenieniem jednego typu sedymentacji, (ii) oraz liczne ale niewielkie budowle, między którymi, w nieckach, osadzały się ziarnity pochodzące z erozji tych budowli. Budowle te wraz z otaczającymi je ziarnitami uległy wczesnej cementacji tworząc większe, złożone konstrukcje.
EN
The radiolarian and calpionellid microfacies are characteristic for the latest Tithonian–Early Berriasian limestones of the Guasasa Formation in the Sierra del Infierno, western Cuba. The limestones of the uppermost part of the El Americano Memberbelongto the Late Tithonian Crassicollaria intermedia Subzone, Crassicollaria Standard Zone, and to the basal part of the Early Berriasian Calpionella alpina Subzone. The lower part of the Tumbadero Member is assigned to the C. alpina Subzone of the Calpionella Standard Zone. A heteromorph ammonite assemblage (Protancyloceras-Vinalesites) crosses the Crassicollaria/Calpionella Zones boundary. The studied limestones belong to three nannoconid assemblages of latest Tithonian–Early Berriasian age assigned to Nannoconus wintereri Subzone, N. steinmannii minor Subzone and N. steinmannii steinmannii Zone. Radiolarian taxa identified in thin sections are consistent with the lower part of D2 radiolarian zone from Western Tethys. The investigated deposits have been probably accumulated in the dysaerobic zone. At the Tithonian–Berriasian (J/K) boundary, dysaerobic to anaerobic conditions could be widespread in the deeper waters of the northwestern Proto-Caribbean basin.
PL
W niniejszej pracy zostały zbadane dwa profile obejmujące wapienie najwyższego tytonu i dolnego beriasu w Sierra del Infierno, na zachód od Vifiales w zachodniej części Kuby (Fig. 1A-C). Wapienie najwyższej części ogniwa El Americano formacji Guasasa (Tab. 1) należą do podpoziomu Crassicollaria intermedia poziomu standardowego Crassicollaria (górny tyton) i najniższej części podpoziomu Calpionella alpina (dolny berias) poziomu standardowego Calpionella (Fig. 2, 3). Dolna część ogniwa Tumbadero została zaliczona do podpoziomu C. alpina. W wapieniach najwyższej części ogniwa El Americano (Fig. 4A) i dolnej części ogniwa Tumbadero (Fig. 4B) charakterystyczne są mikrofacje kalpionellidowa (Fig. 5A) i radiolariowa (Fig. 6A). Pelmikrosparyty (Fig. 5B) i laminowane biomikryty (Fig. 6B) również są spotykane w dolnym beriasie. Kalpionellidy (Fig. 7A-I) są reprezentowane przez pojedyncze okazy do bardzo licznych zespołów (Tab. 2); zwykle są one słabo zachowane. Jest to już wcześniej opisana cecha kalpionellidów obecnych w wapieniach późnego tytonu i beriasu sukcesji Sierra de los Organos (Pop, 1976). Badane wapienie zawierają również nannokonidy (Fig. 8, 9A-H) zaliczone tutaj do podpoziomów Nannoconus wintereri i N. steinmannii minor oraz do poziomu N. steinmannii steinmannii (Tab. 3). Granica ogniw El Americano i Tumbadero znajduje się w obrębie podpoziomu N. steinmannii minor. Radiolarie oznaczone w płytkach cienkich (Fig. 10A-J, 11) odpowiadają dolnej części poziomu radio-lariowego D2 ustalonego w formacji Maiolica zachodniej Tetydy (Jud, 1994). Niektóre rodzaje (Ristola, Mirifusus) są często spotykane w badanych profilach. Obecność juwenilnych amonitów rozwiniętych: Protancyloceras gr. hondense (Imlay) (Fig. 12A), Protancyloceras sp. i Vinalesites sp. (Fig. 12B) została stwierdzona w niektórych płytkach cienkich wykonanych z wapieni (Tab. 4). Zespół tych amonitów przekracza granicę poziomów kalpionellidowych Crassicollaria i Calpionella (Tab. 5). Szare, ciemnoszare i czarne wapienie najwyższej części ogniwa El Americano i dolnej części ogniwa Tumbadero zostały osadzone prawdopodobnie w strefie dysaerobowej, w której fauna bentosowa była bardzo nieliczna (Fig. 12C). Ławice wapieni zazwyczaj nie zawierają struktur wskazujących na intensywną działalność organizmów ryjących w osadzie. W pobliżu granicy tytonu i beriasu (J/K), warunki dysaerobowe (lub nawet anaerobowe) mogły być rozprzestrzenione w głębszych wodach północno-zachodniej części basenu Protokaraibskiego. Takie warunki wskazująna raczej słabą cyrkulację w głębszych wodach tego dosyć wąskiego w tym czasie basenu.
EN
A detailed stratigraphic log of the 28 m thick Cenomanian succession at Zilly (Sachsen-Anhalt) is presented. The succession is composed of 11 m of middle Cenomanian hemi-pelagic marl-limestone alternations ("Planer Limestones") grading into 15 m of upper Cenomanian calcareous pelagites ("Poor rhotomagense Limestones") unconformably overlain by 1,5 m of red-coloured marly clays and limestones ("Rotplaner"). The proof of the interregional marker beds of the Pycnodonte Event at the 11 m level, the Facies Change at 26 m, and the base of the plenus Bed at 26,9 m allow a bio-/chronostratigraphic correlation of these levels with the middle/upper Acanthoceras jukesbrownei Zone (upper middle Cenomanian), the Calycoceras (Proeucalycoceras) guerangeri/Metoicoceras geslinianum Zone transition, and the lower Metoicoceras geslinianumZone, respectively (middle upper Cenomanian).Litho-/microfacies and sequence stratigraphic analyses indicate an overall increase of pelagic influence up to the Facies Change. This retrogradational trend was shortly interrupted by the Pycnodonte Event, the base of which correlates with the late middle Cenomanian sequence boundary SB Ce IV and the succeeding transgressive surface. The Facies Change indicates a significant mid-late Cenomanian sea-level fall (sequence boundary SB Ce V), followed by more shallow water Rotplaner deposition. The Pycnodonte Event is very thick and proximal in character at Zilly. Its monospecific oyster fauna consists of small pycnodonteines assigned to Pycnodonte (Phygraea) vesicularis (LAMARCK) vesiculosa (J. SOWERBY), a secondarily free-lying oyster which lived as a "cup-shaped recliner".The patchy occurrence of the oysters, the sorting and partial damage of valves prior to final burial along with significant supply of terrigenous materials suggest episodically elevated water energy and strong environmental stress during deposition of the Pycnodonte Event. This situation promoted colonization of the sea-floor by, and reproductive success of the inferred eurytopic oyster. The Pycnodonte Event is a classic example of an "onlapping bioevent", the formation of which was controlled by different factors such as sea-level rise, terrigenous influx, environmental stress, and preferential preservation.
EN
The Upper Turonian to Middle Coniacian (Upper Cretaceous) succession of the Babadag Basin (North Dobrogea, Romania) constitutes an apparently continuous fossiliferous carbonate succession. The presence of moderately rich inoceramid, ammonite and foraminiferal assemblages allows for the application of a precise biostratigraphic subdivision. The palaeoenvironmental conditions and evolution of the Babadag Basin during the Late Turonian-Middle Coniacian are inferred using microfacies analysis and foraminiferal spectra. Together, these suggest the Turonian-Coniacian Badabag Basin reflects relatively shallow-water conditions in a near-shore environment, punctuated by two regression events in the Late Turonian and in the Middle Coniacian.
EN
The Wapiennik Breccia Member was originally attributed to the Czorsztyn Limestone Formation of the Czorsztyn Succession in the Pieniny Klippen Basin. The breccia was assigned previously to the Callovian-Oxfordian. Based on micropalaeontological and microfacies studies we have determined its age as late Albian. At this time the Czorsztyn Swell was affected by extensional faulting, with subsequent submarine erosion of scarps. The re-evaluated age of the breccia, as well as the lithology of its clasts and its matrix that contains Cretaceous foraminifera, indicate the assignment of the Wapiennik Breccia Member to the Chmielowa Formation.
EN
The development of a relatively small and isolated part of the Wuchiapingian, Zechstein Wielichowo Reef was possible owing to a progressive subsidence and frequent sea level fluctuations. Three biofacies were distinguished within the studied object: (1) a shallow-water and highly energetic Acanthocladia biofacies, dominated by bryozoans and crinoids, with poorly preserved porosity, reduced mainly by calcite cementation and compaction; (2) the Horridonia biofacies comprising numerous brachiopods, preferring a moderate depth of water, with comparably poor porosity; and (3) the Fenestella/Kingopora biofacies rich in fossils of the highest variability, related to the deepest and calmest waters, occurring on the top of the profile and showing a significant effective porosity, reaching almost 13%. Among many diagenetic processes altering the reef, several lines of evidence suggest that it was the meteoric diagenesis to enhance its porosity the most extensively. Since no stromatolites are present, the final sea level decrease is interpreted to be rapid, hence creating conditions favourable for the meteoric dissolution. Some intraparticle porosity, however, seems to be of a depositional origin.
EN
Lithology, microfacies, benthic foraminiferal and bulk chemical analyses of the Spława section in the Skole Nappe, Outer Carpathians (Poland) reflect environmental changes across the Cenomanian-Turonian transi- tion. Biogenic-rich-turbidite sedimentation preceded the organic-rich sedimentation in the Skole Basin, termina- ting in the latest Cenomanian in response to progressive eustatic sea-level rise and to expansion of an oxygen minimum zone. The uppermost Cenomanian black, laminated, organic-rich shale series records the oceanic anoxic event (OAE-2). The benthos-free black non-calcareous shales exhibiting positive excursions of chemical redox indexes are indicative of bottom-water anoxia, interrupted by periods of suboxic conditions with sedimentation of hemipelagic green shales with poor agglutinated foraminiferal assemblages. An extremely low sedimentation rate or even a hiatus and an increase in deep-water circulation causing basin oxygenation resulted in precipitation of a ferromanganese layers and siliceous-manganiferrous variegated shales, as documented by low values of chemical redox indices. However, the lack of benthos and bioturbation, and low values of the Ce/La ratio in the subsequent succession of variegated shales (dominated by green shales) indicate a return to stressed conditions at basin floor with sluggish bottom water circulation, which occasionally resulted in sea floor anoxia with deposition of organic-rich shales. The long-termed well-oxygenated conditions at the basin floor appeared in the Early Turo- nian, as documented by diversified benthic foraminiferal assemblages. The frequency of radiolarian-rich layers and Ba/Al and Ba/Sc ratios increase up-section, reflecting an increase in primary productivity, induced by upwelling circulation.
EN
Planktonic foraminifera, calcareous dinocysts and nannofossils have been identified in thin sections of the “spotted limestone”, exposed in the Grajcarek Stream at Szlachtowa and assigned to the Pieniny Limestone Formation in the Magura Succession, Pieniny Klippen Belt (southern Poland). The new data indicate that the “spotted limestone” is older than was suggested in previous reports (Albian or Cenomanian?). The foraminiferal taxa belong mainly to the upper part of the Lower Aptian. The calcareous nannofossils may correspond to the Aptian NC6(?)-NC7 zones, whereas the assemblage of calcareous dinoflagellate cysts is less conclusive (Late Barremian-Aptian).
EN
A comparative sedimentological analysis of the Upper Jurassic–Lower Cretaceous deposits carried out on drill-cores from the southern part of the Carpathian Foredeep allowed us to distinguish thirteen main microfacies types. The results of microfacies analyses and stratigraphical data made it possible to propose a lithological subdivision of the southern part of the Upper Jurassic and Lower Cretaceous sediments of the Carpathian Foredeep basement between Kraków and Rzeszów. In the analysed wells, three main sedimentary complexes were distinguished, embracing the following intervals: (i) Callovian–Oxfordian, (ii) Kimmeridgian and (iii) Tithonian– Berriasian–Valanginian. The Oxfordian, Kimmeridgian and Tithonian deposits represent the outer – mid homoclinal ramp facies, whereas the Berriasian and Valanginian deposits belong to the inner homoclinal ramp facies. Complexes of microbial-sponge reefs, with a distinct relief, could be recognised in the Upper Oxfordian sediments only. The development of these buildups took place in a basin typified by diversified morphology, determined by the block-type structure of the Palaeozoic basement and synsedimentary tectonics, which brought about substantial variability in thickness of the Oxfordian sediments. At the end of the Oxfordian, large complexes of the reef facies were replaced mainly by microbial-sponge and microbial-coral biostromes developed during the Kimmeridgian and Tithonian. In the principal part of the studied area (except the western part of the described fragment of the Carpathian Foredeep; Kraków area) during the Kimmeridgian, Tithonian, Berriasian and Valanginian, sedimentation occurred in a basin typified by homogeneous morphology, which resulted in a wide extent and comparable thicknesses of the distinguished facies types. In the studied sections, indications of partial or complete dolomitization were observed in a large part of the sediments. Four generations of dolomite document a complex diagenetic history with multiple episodes of dolomite formation: from early diagenetic environment to late burial conditions.
EN
The Upper Jurassic–Lower Cretaceous carbonate sediments developed in a narrow, Ukrainian part of the basement of the Carpathian Foredeep show high facies diversity. Based upon thin section studies, the authors identified eleven principal microfacies varieties. Three main stages of development of carbonate platform were distinguished: (i) Oxfordian–Early Kimmeridgian, (ii) Kimmeridgian–Tithonian, and (iii) Berriasian–Valanginian. The Oxfordian sediments are rather thin and represent both the outer and inner, distally steepened ramp facies. In the Late Kimmeridgian and, mainly, in the Tithonian, the intensive growth of rimmed platform took place with distinct zones of peritidal, margin barrier and platform slope, bearing calciturbidite facies. Development of the rimmed platform was controlled by synsedimentary tectonic movements along faults rejuvenated southwest of the Holy Cross Mts. Fault Zone. In the Berriasian–Valanginian, the dominant process was sedimentation onto not-rimmed platform controlled by small sea-level changes. Both the facies development and literature data indicate that the Late Jurassic sedimentation in the Ukrainian part of the Carpathian Foredeep basement shows considerable differences in comparison to that of the Polish part. In the studied successions, large Oxfordian microbial-siliceous sponge reef complexes, known from the Polish part of the Carpathian Foredeep basement and other areas in Europe, were rare. In the study area carbonate buildups were encountered mainly in the intervals representing the Upper Kimmeridgian–Tithonian where small, microbial-sponge and microbial-coral biostromes or patch-reefs were formed. Their growth was presumably restricted to a narrow zone of the upper slope, close to ooidal-bioclastic margin platform facies. In the Polish part of the Carpathian Foredeep basement, the Late Jurassic sedimentation took place on a vast, homoclinal ramp while in the Ukrainian part it proceeded on a narrow, distally steepened ramp and rimmed platform with distinct marginal platform barrier. Similar platform facies distribution in both regions appeared mainly in the Early Cretaceous, although with some stratigraphical differences. The facies distribution of the Upper Jurassic sediments was closely controlled by the block structure of the basement and by orientation of the main, transcontinental Holy Cross Mts. Fault Zone, which supports the opinion on its activity in the Mesozoic era. The Ukrainian part of the Carpathian Foredeep basement located over the Palaeozoic Kokhanivka Block, between the Krakovets and Holy Cross fault zones, includes predominantly the slope, marginal and inner platform facies. Facies observed over the Palaeozoic Rava Ruska Block (south-western part of the East-European Platform), between the Holy Cross and Rava Ruska fault zones, represents mainly the inner platform and the peri-shore deposits.
EN
Chalky limestones in the Zakrzówek Horst were laid down in small sponge-microbolite biostromes that provided stable foundation for the growth of extensive sponge- ’’Tubiphytes ” biostromes forming the nodular limestones in the Zakrzówek area. The ammonites occurred in chalky limestones indicate that the studied deposits belong to the youngest palaentologically documented Upper Jurassic limestones in the Kraków area (Planula zone). The vertical succession of fauna and facies characteristics indicate progressive shallowing of the environment at the end Oxfordian, from deeper shelf to shallower water.
EN
The Veliky Kamenets section in the eastern part of the Pieniny Klippen Belt in the Ukrainian Carpathians shows a well exposed, 83 m thick succession composed of Jurassic and lowermost Cretaceous (Berriasian) deposits. The terrigenous part of the section includes: gravels with a sandy matrix (unit 1A), massive grey-green sandstones (unit 1B) and shales with intercalations of siltstones/sandstones and oyster/gastropod lumachelles (unit 2). Organic-walled dinoflagellates document the Toarcian-Aalenian age of the siliciclastic deposits of unit 2. The carbonate part of the succession embraces: stromatactis mud-mounds interfingering with crinoidal limestones (unit 3A), lower nodular limestones (unit 3B), cherty limestones (unit 3C), upper nodular limestones (unit 3D), pink pelitic limestones (unit 3E), limestones with a volcanogenic bed (unit 5) and limestone breccia limestones (unit 6). This succession has yielded abundant ammonites from the Bathonian, Oxfordian and Kimmeridgian (with a stratigraphical hiatus covering the Callovian and Lower Oxfordian), as well as calcareous dinoflagellates (from the Upper Oxfordian towards the top of the succession), and calpionellids (in the Tithonian and Berriasian). Detailed stratigraphical study of the succession based both on ammonites and microfossils has resulted in the recognition of biostratigraphical units and their correlation with the chronostratigraphical scale.The microfacies recognized in the pelagic part of the succession include: the “filament” (Bositra) microfacies (Bathonian), the planktonic foraminifer microfacies (Oxfordian), the Saccocoma microfacies (Kimmeridgian to Upper Tithonian), and the calpionellid microfacies (Upper Tithonian–Berriasian). The volcanogenic rocks (lava flows and volcanic ash) appear in the topmost part of the succession (units 4 to 6) and this volcanic event is very precisely located in the Elliptica-Simplex chrons of the Middle and Late Berriasian.
EN
Coniacian deposits, ca. 1.5 m thick, cropping out in the Wielkanoc Quarry, north of Kraków in southern Poland, consist of firm, nodular and, less commonly, marly limestones with horizons of in situ, slightly phosphatized hexactinellid sponges and thick-shelled inoceramid bivalves. The succession is composed of foraminiferal-inoceramid packstones with common sand-sized quartz and glauconite grains at the base, passing upwards into foraminiferal or foraminiferal-inoceramid wackestones with or without rare glauconite. A microfacies analysis shows that planktonic foraminifers are the dominant forms, while benthic forms are rare. The facies indicates that sedimentation in the Wielkanoc area on the Kraków Swell, which separated the deeper Mid-Polish Trough Zone to the north-east and the Opole Trough Zone to the south-west, was generally calm (documented by abundant wackestones) and slow (indicated by the dominant sedimentary “coccolith system” and presence of glauconite) during the Coniacian. Rare episodes of non-deposition are recorded by episodes of phosphatization and minor intra-Coniacian discontinuity surfaces. The presence of hexactinellid sponges in the section studied are consistent with a calm environment, below the storm-wave base, with low rates of sedimentation. Subhercynian (latest Turonian–Coniacian Ilsede Phase) local tectonic movements had an important influence on the evolution of the region. They presumably led to subsidence of the Wielkanoc Block during the Early Coniacian. These movements were probably associated with activity on the Kraków–Myszków Fault Zone.
EN
Carbonate deposits of the ammonitico rosso-type developed in the Czorsztyn Succession represent the shallowest northern facies zone of the Pieniny Klippen Basin, formed on the southern slope of a submarine ridge named the Czorsztyn Ridge. The lithology of the Middle Jurassic ammonitico rosso-type deposits in the Czorsztyn Succession of the north-westernmost part of the Pieniny Klippen Belt in Poland appears highly diversified and includes: shell coquinas and distinctly laminated limestones consisting of micritic and organodetrital, mostly crinoidal laminae. The microfacies vary from pure micrite to packstones rich in filaments, and packstone- grainstones rich in various bioclasts and peloids. Neptunian dyke infillings are of similar lithological and microfacies types. The history of deposition of the oldest ammonitico rosso-type and associated deposits was different in the north-westernmost part of the Polish section of the Pieniny Klippen Basin, compared to its central and eastern parts. A distinct differentiation of the basin is thus proposed along the Czorsztyn Ridge: from a shallower, north-westernmost part to deeper parts, with the boundary-zone in the present Szaflary area, which is characterised by scarp breccias and neptunian dykes cutting through the basement composed of crinoidal limestones. This indicates that the Czorsztyn Ridge was laterally differentiated into subordinate highs and lows that were formed in a tectonically active environment.
PL
Środkowojurajskie osady typu ammonitico rosso, będące przedmiotem badań, znajdują się w dwóch odsłonięciach północno- zachodniej części polskiego odcinka pienińskiego pasa skałkowego. Wybrane odsłonięcia – Stankowa Skała koło Zaskala i kamieniołom "Wapiennik" w Szaflarach należą do czorsztyńskiej sukcesji skałkowej (Fig. 1). Profil Stankowej Skały rozpoczyna się wapieniami krynoidowymi zaliczanymi do formacji wapienia ze Smolegowej. Powyżej występują wapienie reprezentujące formację wapienia czorsztyńskiego (Fig. 2), z których została szczegółowo opisana najniższa część (warstwy 1 i 2 – Fig. 3). W kamieniołomie "Wapiennik" występują wapienie krynoidowe zaliczanedo formacji wapienia ze Smolegowej, które są pocięte opisanymi w pracy żyłami neptunicznymi formacji wapienia czorsztyńskiego (Fig. 7). Bezpośrednio nad wapieniami krynoidowymi znajdują się uławicone wapienie formacji wapienia czorsztyńskiego. Ze wschodniej, starej części kamieniołomu pochodzi brekcja zbudowana z okruchów wapieni krynoidowych i czerwonego matryksu zaliczana do ogniwa brekcji z Wapiennika, najniższej części formacji wapienia czorsztyńskiego, opisywana przez Birkenmajera (1952; 1958; 1963; 1977) (Fig. 6). Osady w wymienionych odsłonięciach, mimo, że tradycyjnie zaliczane do osadów typu ammonitico rosso, znacznie różnią się pod względem wykształcenia od osadów formacji wapienia czorsztyńskiego z centralnej i wschodniej części pienińskiego pasa skałkowego. Profil Stankowej Skały charakteryzuje się występowaniem uławiconych, twardych, niezbulonych wapieni, które często wykazują laminację (warstwa 1b, 2a i 2c; Fig. 5). Wapienie laminowane reprezentują następujące mikrofacje: szkarłupniowomuszlową, peloidową, peloidowo-szkarłupniową, filamentowokrynoidow ą, mikrytową oraz "z krynoidami"(Fig. 4). Wapienie pozostałej częoeci badanego odcinka formacji wapienia czorsztyńskiego (warstwa 1a i 2b) reprezentują dwa rodzaje mikrofacji: filamentową i filamentowo-peloidową ze szkarłupniami (Fig. 4). W kamieniołomie "Wapiennik" w obrębie wapieni krynoidowych występują skośne żyły neptuniczne, głównie z wapieniami mikrytowymi i wapieniami ziarnistymi (Fig. 8). Osady tworzące żyły neptuniczne reprezentują następujące mikrofacje: szkarłupniowofilamentow ą, szkarłupniowo-muszlową, peloidową, peloidowofilamentow ą, filamentową, mikrytową oraz mikrofację ziarn z powłokami mikrobialnymi i peloidami (Fig. 9). Wapienie dolnej części formacji wapienia czorsztyńskiego z odsłonięcia Stankowa Skała i wypełnienia żył neptunicznych z kamieniołomu "Wapiennik" k/Szaflar można zaliczyć do przedziału najwyższy(?) bajos - kelowej. Istnieją znaczne różnice w wykształceniu najstarszych osadów typu ammonitico rosso występujących we wschodniej i środkowej części pienińskiego pasa skałkowego w Polsce oraz tych obserwowanych w opisanych odsłonięciach z części północozachodniej. W profilach wschodniej i oerodkowej części pienińskiego pasa skałkowego, poniżej wapieni ammonitico rosso, występują czerwone wapienie krynoidowe zaliczane do formacji wapienia z Krupianki, których nie stwierdzono w badanej północo-zachodniej części, co może wskazywać na istnienie znacznej luki stratygraficznej w tym rejonie (Fig. 10A; patrz także Fig. 2). Natomiast w środkowej i wschodniej części pienińskiego pasa skałkowego występują wapienie bulaste, charakteryzujące się obecnością mikrofacji filamentowej i mikrofacji filamentowej ze ślimakami juwenilnymi z niewielkim udziałem innych bioklastów oraz okruchów skał starszych - "ekstraklastów". W części północno-zachodniej wapienie ammonitico rosso nie są zbulone, często wykazują laminację nawet z warstwowaniem skośnym i uziarnieniem frakcjonalnym, a mikrofacje reprezentują znacznie szersze spectrum: od mikrofacji filamentowych poprzez szkarłupniowe i szkarłupniowo-muszlowe aż do peloidowych i mikrytowych, są także bogatsze w "ekstraklasty". Zespół wymienionych cech wskazuje na redepozycję materiału, a sedymentacja tego osadu mogła zachodzić w połogich spękaniach dna tworząc poziome żyły neptuniczne (sille), które na skutek późniejszej erozji zostały pozbawione osadu przykrywającego. Ponadto z rejonu Szaflar opisano liczne żyły neptuniczne i brekcje wapienne (Birkenmajer, 1952, 1958, 1963, 1977) interpretowane jako brekcje przyskarpowe, związane z synsedymentacyjnymi procesami tektonicznymi zachodzącymi na obszarze grzbietu czorsztyńskiego, które miały miejsce na przełomie bajosu i batonu w czasie mezokimeryjskich ruchów ekstensyjnych (Fig. 10B). Powyższe obserwacje wskazują, że wschodnia i środkowa część pienińskiego pasa skałkowego Polski oraz jego północnozachodni obszar reprezentują odmienne strefy sedymentacji w basenie skałkowym, ze strefą "graniczną" w rejonie dzisiejszych Szaflar.
EN
The Upper Jurassic strata of the Krížna Unit in the Tatra Mts. comprises pelagic, fine-grained and well-oxygenated deposits. They are represented by red radiolarites and radiolarian limestones (Czajakowa Radiolarites Formation), red nodular limestones (Czorsztyn Limestones Formation) and wavy, platy or nodular light grey and reddish limestones and marlstones (Jasenina Formation). These deposits are mainly wackestones characterized by a succession of the following microfacies: radiolarian, filament-Saccocoma, Saccocoma and Globochaete–Saccocoma. The section comprises four calcareous dinoflagellate zones, i.e. the Late Kimmeridgian Moluccana Zone, and the Early Tithonian Borzai, Pulla and Malmica zones. In the uppermost part of the studied section, the Early Tithonian Dobeni Subzone of the Chitinoidella Zone has been identified. Using these biostratigraphic data, the sedimentation rate for the Late Kimmeridgian (Borzai Zone) and Early Tithonian (Dobeni Subzone of the Chitinoidella Zone) interval is estimated as 3.7 m/my. This is in accordance with the general trend of increasing sedimentation rate through the Tithonian and Berriasian. The increased supply of clastic material in the Jasenina Formation may have been caused by climate changes and continental weathering. The sedimentation was controlled mainly by eustatic changes and fluctuations in ACD and CCD levels.
EN
The Buila-Vânturariţa Massif consists of massive Upper Jurassic reef limestones (Kimmeridgian–Tithonian) and Lower Cretaceous (Berriasian–Valanginian, and Barremian–?Lower Aptian) deposits. Besides corals and stromatoporoids, a wide range of micro-encrusters and microbialites has contributed to their development. In this study, the authors describe briefly and interpret the main facies associations and present the microfossil assemblages that are important for age determination. The distribution of facies associations, corroborated with the micropalaeontological content and early diagenetic features, indicate different depositional environments. The carbonate successions show the evolution of the Late Jurassic–Early Cretaceous depositional environments from slope and reef-front to internal-platform sedimentary settings, including peritidal environments in the lowermost Cretaceous. Early diagenesis, represented by synsedimentary cementation in the form of micritization (including cement crusts in the reef microframework), followed by dissolution, cementation and dolomitization in a meteoric regime, and void-filling late cementation during the burial stage.
EN
The Veliky Kamenets quarry is an essential locality in stratigraphical and palaeomagnetical studies of the Jurassic and lowermost Cretaceous in eastern part of the Pieniny Klippen Belt. The carbonate succession, about 40 m thick, has been subdivided into 6 major lithostratigraphical units (A, B, C, D, DE and E) which biostratigraphy was based mainly on the ammonite fauna (Lewandowski et al. 2005); these deposits are overlain by about 13 m thick complex unit of carbonates (fossiliferous limestones and calcareous sedimentary breccias composed mainly of micritic limestone clasts) alternating with volcanogenic rocks (basalt lava flows, and pyroclastic deposits). The studied succession yielded abundant and well preserved microfossils which enable detailed stratigraphical interpretation of the deposits in question. The lowest part of the Upper Jurassic succession (upper part of unit B) is represented by lower Ammonitico Rosso limestones rich in planktonic foraminifers Globuligerina. The ammonites are indicative of the Plicatilis Zone and Transversarium/or Bifurcatus Zone of Middle, and possibly lowermost Upper Oxfordian, whereas calcareous dinoflagellates found at the top of the unit indicate the Parvula Zone of the Upper Oxfordian. The overlying cherty limestones (unit C) yielded the Kimmeridgian ammonites found in their uppermost part; the deposits of the unit are rich in rests of planktonic crinoids Saccocoma. The younger ammonite assemblage coming from the lower part of the upper Ammonitico Rosso unit (unit D) is indicative of the Acanthicum Zone of the Upper Kimmeridgian. These deposits are characterized by Saccocoma-Globochaete microfacies, and yielded calcareous dinocysts indicative of the Moluccana Zone of the Kimmeridgian. The Kimmeridgian/Tithonian boundary runs in the middle of the discussed Ammonitico Rosso unit (unit D) as evidenced by occurrence of calcareous dinocyst Carpistomiosphaera tithonica. The upper part of the unit yielded calpionellids and calcareous dinocysts indicative of the Praetintinnopsella Zone located at the turn of the Middle and Upper Tithonian. The topmost part of the unit, as well as the lower part of overlying partly nodular micritic limestones (unit E/D) yielded already calpionellids and calcareous dinocysts indicative of the Crassicolaria Zone of the Upper Tithonian. The deposits are dominated by the Crassicolaria-Globochaete microfacies. The Jurassic/Cretacous boundary runs in the middle of the partly nodular micritic limestone unit (D/E). Here appears assemblage dominated by spherical forms of Calpionella alpina indicating the lowermost part of the Calpionella Zone of the Lower Berriasian. This zone ranges up at least to the upper part of massive micritic limestones (unit E) where the calpionellids of the Ferasini Subzone have been recognized. The microfacies of the Globochaete-Calpionella type, locally enriched in radiolarians prevail. The carbonates of the topmost part of the succession covering the basalt lava flows, as well as limestones alternating with pyroclastic layers yielded calpionellids of the Calpionellopsis Zone of the Upper Berriasian indicating both the Simplex Subzone, and the Oblonga Subzone. The breccias contain i.a. the clasts of the Upper Tithonian micritic limestones with calpionellids of the Crassicolaria Zone and of volcanic rocks. The carbonates correspond to the ?ysa Limestone Fm., including the Walentowa Breccia Member of this formation (see Birkenmajer 1977).
EN
Lowermost Triassic oolitic limestones occur in the Gorzów Wielkopolski IG 1 borehole as thin intercalations (mostly less than 1 m thick) within laminated or massive reddish brown mudstones or sandy mudstones of the Baltic and Pomerania formations of the Lowerand Middle Buntsandstein, respectively. In order to characterize the microfacies and diagenesis of the limestones, 46 thin sections from 44 core specimens were investigated. The limestone intercalations are poorly diversified in terms of microfacies, especially in the lower part of the section (Baltic Formation), where almost exclusively fine-grained, well-sorted ooid grainstones occur. The upper part of the section (Pomerania Formation) is more diverse. In addition to grainstones similar to those of the Baltic Formation, coarse-grained and/or poorly sorted ooid grainstones, subordinate stromatolites, oncoid grainstones, and mudstones are present. The limestones are almost completely devoid of bioclasts. The only organic remains present in the thin sections are single rounded plates composed of apatite (possibly fish scales) and, even rarer, snail shells and small shells of other organisms (bivalves?, ostracods?), now dissolved (probably originally aragonitic) and visible only due to the preserved coatings of micritic calcite cement previously precipitated on them. The diagenesis of these deposits has not been very intensive and involves mainly cementation by calcite and subordinately by anhydrite, recrystallization of some ooids and other grains (including carbonate bioclasts), and to alesser extent by dissolution under pressure.
EN
Investigation of mixed carbonate−siliciclastic Lower Devonian deposits have been carried out in the Ivanye Zolote and Ustechko sections in Podolia, Ukraine. Based on palynomorph evidence, the age of the samples studied is late Lochkovian, not older than the NM Oppel Miospore Zone, specifically the Si Lineage Zone. The presence of acritarchs and chitinozoans points to dominantly marine depositional conditions. However, a regressive environmental change toward more brackish conditions is indicated by a decrease in the taxonomic diversity of acritarchs in the topmost samples, the simultaneous disappearance of chitinozoans, and an increase in leiosphaerid frequency. Furthermore, evolution of limestone microfacies demonstrates a progressive transition from a shrinking marine basin toward a brackish, storm−affected muddy lagoon, manifested by recurrent profusion of impoverished, mostly opportunistic and euryhaline shelly benthos (nuculanid bivalves, leperditicopids and other ostracods, terebratulid brachiopods), chaetetid demosponges and diverse ichthyofauna. The association of plant (mainly nematophytes and some tracheids) and animal (eurypterid, ?scorpion, and possibly other arthropod) remains points to the presence of nearby Early Devonian wetland vegetation, providing food and shelter for various semi−aquatic and other terrestrial arthropods.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.