In the paper a transformation between two height datums (Kronstadt’60 and Kronstadt’86, the latter being a part of the present National Spatial Reference System in Poland) with the use of geostatistical method - kriging is presented. As the height differences between the two datums reveal visible trend a natural decision is to use the kind of kriging method that takes into account nonstationarity in the average behavior of the spatial process (height differences between the two datums). Hence, two methods were applied: hybrid technique (a method combining Trend Surface Analysis with ordinary kriging on least squares residuals) and universal kriging. The background of the two methods has been presented. The two methods were compared with respect to the prediction capabilities in a process of crossvalidation and additionally they were compared to the results obtained by applying a polynomial regression transformation model. The results obtained within this study prove that the structure hidden in the residual part of the model and used in kriging methods may improve prediction capabilities of the transformation model.
PL
W artykule przedstawiono lokalną transformację między dwoma układami wysokości (Kronsztadt’60 oraz Kronsztadt’86, ostatni z nich będący obecnie częścią Państwowego Systemu Odniesień Przestrzennych w Polsce) z wykorzystaniem metod geostatystycznych - kriging. Ze względu na fakt, iż różnice wysokości między dwoma układami na punktach dostosowania wykazywały silny trend pod uwagę wzięto tylko te metody, które uwzględniają tego typu niestacjonarność procesu. Zastosowano dwie metody: hybrydową (Analiza Trendu Powierzchniowego z interpolacją reszt do modelu za pomocą krigingu zwyczajnego) oraz kriging uniwersalny. Przedstawiono rys teoretyczny obydwu metod. Dokonano porównania wyżej wymienionych metod pod względem ich zdolności predykcyjnych w procesie kroswalidacji modeli a zarazem otrzymane wyniki skonfrontowano z wynikami otrzymanymi z regresji wielomianowej. Otrzymane wyniki dowodzą, iż struktura ukryta w rezydualnej części modelu używana przez kriging może podnieść zdolności predykcyjne modelu transformacji.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Przedstawiono możliwość zastosowania metod geostatystycznych do oceny zapachowej jakości powietrza, dostępnych w systemach informacji geograficznej GIS (geographic information system). Interpolację przeprowadzono metodami ważonych odwrotności odległości IDW (inverse distance weighted) oraz krigingu zwykłego. Dane przestrzenne pozyskano w terenowych badaniach intensywności zapachu wykonanych zgodnie z metodyką zawartą w wytycznych VDI 3940. Wyniki różnych wariantów interpolacji dla obu metod przeanalizowano i oceniono na podstawie wielkości błędów charakteryzujących dokładność danej metody oraz jakości wizualnej zgodnej z charakterem tworzenia się smugi odorowej.
EN
Air quality in the neighborhood (1000 m) of rape seed processing plant was evaluated by a direct olfactometric testing (6 people in 3 sessions). The results were interpolated by inverse distance weighted and ordinary kriging methods. Both shape of the odor propagation band and accuracy of the methods used were detd.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Wykonano symulacje rozkładu porowatości efektywnej i miąższości dla złoża Różańsko wykorzystując metody geostatystyczne oraz metodę sztucznych sieci neuronowych. Zastosowano metodę regresji wielokrotnej do estymacji parametrów złożowych (porowatości i miąższości) oraz do stworzenia ich przestrzennych rozkładów, wygenerowanych na podstawie interpretacji wyników pomiarowych sejsmiki 3D, wykonanych na obszarze badanego obiektu. Z drugiej strony zastosowano do obliczeń sieć neuronową typu perceptron wielowarstwowy z algorytmem genetycznym. Stworzono mapy rozkładów symulowanych parametrów i porównano otrzymane wyniki. Stwierdzono, że obie metody dają poprawne wyniki, przy czym metoda sztucznych sieci neuronowych (ANN), będąc metodą szybszą i mniej pracochłonną stawia większe wymagania bazie danych, ze względu na tendencje do wygładzania symulowanych wyników.
EN
Numerical models of Różańsko reservoir were performed using geostatistical and artificial neural network (ANN) methods. The multiple regression method were applied as well for estimations of reservoir parameters extracted from well-log functions as for creation of space distribution of reservoir parameters depending on distributions of appropriate seismic attributes generated on the base of 3-D image of the investigated object. From the other side artificial neural network (ANN) with genetic algorithm were applied. Sketches of porosity and thickness distribution were obtained as a final result. It was showed that both methods give similar results.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.