Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  metodologia powierzchni odpowiedzi
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This study aims to investigate the effects of process parameters: feed, depth of cut and flow rate, on the temperature during face milling of the D2 tool steel under two different lubricant conditions, Minimum Quantity Lubrication (MQL) and Nano fluid Minimum Quantity Lubrication (NFMQL). Deionized water with the flow rate range 200–400 ml/h was used in MQL. 2% by weight concentration of Al2O3 nano particles with deionized water as a base fluid used as NFMQL with the same flow rate. Response surface methodology RSM central composite design CCD was used to design experiment run, modeling and analysis. ANOVA was used for the adequacy and validation of the system. The comparison shows that NFMQL condition reduced temperature more efficiently during machining.
EN
Emulsion liquid membrane technique (ELM) was used for the extraction of phenol from synthetic and industrial effluents. In this study, the liquid membrane used for phenol removal was composed of kerosene as the solvent, Span-80 as the surfactant and Sodium hydroxide as an internal reagent. Statistical experimental design was applied for the optimization of process parameters for the removal of phenol by ELM. The effects of process parameters namely, Surfactant concentration, membrane or organic to internal phase ratio (M/I) and emulsion to an external phase ratio (E/E) on the removal of phenol were optimized using a response surface method. The optimum conditions for the extraction of phenol using Response surface methodology were: surfactant concentration - 4.1802%, M/I ratio: 0.9987(v/v), and E/E ratio: 0.4718 (v/v). Under the optimized condition the maximum phenol extraction was found to be 98.88% respectively.
3
84%
EN
The design of experiment (DoE) is a methodology originated from early 1920s when Fisher’s papers created the analysis of variance and first known experimental designs: latin squares. It is focused on a construction of empirical models based on measurements obtained from specifically structured and driven experiments. Its development resulted in the constitution of four distinctive branches recognized by the industry: factorials (full or fractional), Taguchi’s robust design, Shainin’s Red-X® and a response surface methodology (RSM). On one hand, the well-known success stories of this methodology implementations promise great benefits, while on other hand, the mathematical complexity of mathematical and statistical assumptions very often lead to improper use and wrong inferences. The possible solution to avoid such mistakes is the expert system supporting the design of experiments and subsequently the analysis of obtained data. The authors propose the outline of such system and provides the general analysis of the ontology and related inference rules.
EN
The current study focuses on the performance of the Solar Greenhouse Dryer for drying of grapes for raisin production in the Solar Dryer and Open sun condition in Western Maharashtra. The grape is also known as Vitis Vinifera, and it is a sub-tropical fruit with excess pulp content. The grapes are used as an immune booster as it contains various Phyto-chemicals which reduce various diseases. It is estimated that nearly 80% of grapes produced in India are exported to European countries. The Maharashtra state ranks first in the production of grapes; probably, Western Maharashtra produces nearly 800 thousand tons of grapes every year. The major wastage of grapes is due to a low sugar content, glossy appearance, shrinkage, excess water in the berry, scorching and size variations. Therefore, there is a need to preserve grapes by drying and production of raisins for a non-seasonal requirement. The experiment was conducted for drying of grapes in the Solar Greenhouse Dryer and Open Sun conditions from 1st of April to 4th of April for 48 hours. The initial weight of the grapes to be dried was 500 grams for both the Solar Greenhouse Dryer and Open Sun drying conditions. The experiment was conducted at Bahe, Borgaon, Tal-Walwa, Dist-Sangli, Maharashtra, India located at 17.115oN and 74.33oE. The experimental observations collected during the `experimentation were set as input data for the Design of Experiments i.e., for Response Surface Modelling (RSM). The main aim of using DOE i.e., Response Surface Modelling, is to obtain an optimum region for drying of grapes in the Solar Greenhouse Dryer, from the Surface plot; a region of maxima and minima was obtained. The contour plot obtained during modelling resembles the optimum region of drying, the optimum region for drying grapes is 45 to 50oC respectively. The Moisture Removal Rate (MRR) for drying of grapes in the Solar Greenhouse Dryer and in the Open Sun drying is 73.6% and 57.2% respectively. The drying rate observed during the experiment has a better resemblance with simulated Response Surface Modelling.
EN
This study aims to explore the efficiency of an agro waste material for the remediation of Pb(II) contaminated water. A factorial design approach is adopted to optimize removal efficiency and to study the interaction between effective variables. A face-centered Draper-Lin composite design predicted 100% removal efficiency at optimum variables; pH 8, initial concentration of Pb(II) ion 12mg/L, sorbent dose 200mg and agitation time 110 min. Regration coefficient (R2 = 99.9%) of a plot of the predicted versus the observed values and p value (>0.05) confirms the applicability of the predicted model. Langmuir and Dubinin-Radushkevich (D-R) isotherm models were applicable to sorption data with the Langmuir sorption capacity of 21.61š0.78 mg/g. The energy of sorption was found to be 13.62š0.32 kJ/mol expected for ion-exchange or chemisorption nature of sorption process. Characterization of Grewia seed suggested a possible contribution of carboxyl and hydroxyl groups in the process of biosorption. The present study shows that Grewia seeds can be used effectively for the remediation of Pb(II) contaminated water.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.