Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  metoda najbliższego sąsiada
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In response to the current issue of poor modeling performance of Building Information Modeling for building models, a new Building Information Modeling based on an improved region growth algorithm is proposed. This method improves the region growth algorithm by introducing machine learning technology, and utilizes the improved algorithm to perfect the building model, thereby improving the efficiency of Building Information Modeling. The performance comparison experiment of the improved algorithm shows that its accuracy is 92.3%, respectively, which are lower than the comparison algorithm. Subsequent empirical analysis found that the robustness rating of the renovated building with the new Building Information Modeling was 94.06, significantly higher than the traditional model. The above results indicate that the new Building Information Modeling proposed in the study has high efficiency and accuracy in building reinforcement and renovation. This method can provide a new solution and idea for the field of building reinforcement and renovation.
EN
Traffic flow is one of the fundamental parameters for traffic analysis and planning. With the rapid development of intelligent transportation systems, a large number of various detectors have been deployed in urban roads and, consequently, huge amount of data relating to the traffic flow are accumulatively available now. However, the traffic flow data detected through various detectors are often degraded due to the presence of a number of missing data, which can even lead to erroneous analysis and decision if no appropriate process is carried out. To remedy this issue, great research efforts have been made and subsequently various imputation techniques have been successively proposed in recent years, among which the k nearest neighbour algorithm (kNN) has received a great popularity as it is easy to implement and impute the missing data effectively. In the work presented in this paper, we firstly analyse the stochastic effect of traffic flow, to which the suffering of the kNN algorithm can be attributed. This motivates us to make an improvement, while eliminating the requirement to predefine parameters. Such a parameter-free algorithm has been realized by introducing a new similarity metric which is combined with the conventional metric so as to avoid the parameter setting, which is often determined with the requirement of adequate domain knowledge. Unlike the conventional version of the kNN algorithm, the proposed algorithm employs the multivariate linear regression model to estimate the weights for the final output, based on a set of data, which is smoothed by a Wavelet technique. A series of experiments have been performed, based on a set of traffic flow data reported from serval different countries, to examine the adaptive determination of parameters and the smoothing effect. Additional experiments have been conducted to evaluate the competent performance for the proposed algorithm by comparing to a number of widely-used imputing algorithms.
3
Content available remote Creating see-around scenes using panorama stitching
100%
EN
Image stitching refers to the process of combining multiple images of the same scene to produce a single high-resolution image, known as panorama stitching. The aim of this paper is to produce a high-quality stitched panorama image with less computation time. This is achieved by proposing four combinations of algorithms. First combination includes FAST corner detector, Brute Force K-Nearest Neighbor (KNN) and Random Sample Consensus (RANSAC). Second combination includes FAST, Brute Force (KNN) and Progressive Sample Consensus (PROSAC). Third combination includes ORB, Brute Force (KNN) and RANSAC. Fourth combination contains ORB, Brute Force (KNN) and PROSAC. Next, each combination involves a calculation of Transformation Matrix. The results demonstrated that the fourth combination produced a panoramic image with the highest performance and better quality compared to other combinations. The processing time is reduced by 67% for the third combination and by 68% for the fourth combination compared to stat-of-the-art.
EN
Traffic accidents usually cause congestion and increase travel-times. The cost of extra travel time and fuel consumption due to congestion is huge. Traffic operators and drivers expect an accurately forecasted accident duration to reduce uncertainty and to enable the implementation of appropriate strategies. This study demonstrates two non-parametric machine learning methods, namely the k-nearest neighbour method and artificial neural network method, to construct accident duration prediction models. The factors influencing the occurrence of accidents are numerous and complex. To capture this phenomenon and improve the performance of accident duration prediction, the models incorporated various data including accident characteristics, traffic data, illumination, weather conditions, and road geometry characteristics. All raw data are collected from two public agencies and were integrated and cross-checked. Before model development, a correlation analysis was performed to reduce the scale of interrelated features or variables. Based on the performance comparison results, an artificial neural network model can provide good and reasonable prediction for accident duration with mean absolute percentage error values less than 30%, which are better than the prediction results of a k-nearest neighbour model. Based on comparison results for circumstances, the Model which incorporated significant variables and employed the ANN method can provide a more accurate prediction of accident duration when the circumstances involved the day time or drunk driving than those that involved night time and did not involve drunk driving. Empirical evaluation results reveal that significant variables possess a major influence on accident duration prediction.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.