Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  metoda Lucasa-Kanade
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available Detection of vehicles moving in wrong direction
100%
EN
In this paper we describe a method for detecting situations where a vehicle moves along a highway in the wrong direction. The first step of the algorithm is to build a pattern using Gaussian mixture model based on the optical flow calculated with the Lucas-Kanade method. The second stage concerns the detection of objects as a potential road hazard. The optical flow calculated on-line during the second stage is compared with the traffic pattern used in the first stage. Then the difference in movement direction is detected using predefined thresholds.
2
Content available remote Segmentacja sekwencji obrazów z wideodetektora na podstawie przepływu optycznego
67%
PL
Jednym z ważniejszych zadań wideodetekcji jest lokalizacja obiektów (pojazdów i pieszych) będących w ruchu. W celu realizacji tego zadania postanowiono sprawdzić przydatność metod wyznaczania przepływu optycznego (optical flow). Na podstawie badań literaturowych wybrano dwie metody: lokalną Lucasa-Kanade i globalną Horna-Schuncka. Opierając się na analizie sztucznie wygenerowanych sekwencji obrazów, określono optymalne parametry obu metod. Dokonano wyboru najlepszego kryterium segmentacji, którym okazała się wartość modułu prędkości optycznej. Wyniki sprawdzono na rzeczywistych obrazach ruchu drogowego, pozyskanych z krakowskiego wideodetektora, uzyskując zadowalające efekty.
EN
One of the most important tasks of videodetection is the localization of moving objects (vehicles and pedestrians). For realization of that task the utility of the optical flow calculation methods has been tested. After reviewing the available literature two methods have been selected: local Lucas-Kanade method and a global Horn-Schunck method. The optimal parameters for both methods have been determined from analysis of artificially generated image sequences. The best segmentation criterion has been selected as the modulus of optical flow speed. The results have been tested on real road traffic images, collected from the Kraków videodetector, with quite satisfactory results.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.