Reduction of this type may help to solve one of the greatest problems in pattern recognition, i.e. the compromise between the time of making a decision and its correctness. In the analysis of biomedical data, classification time is less important than certainty that classification is correct, i.e. that reliability of classification is accepted by the algorithm’s operator. It is usually possible to reduce the number of wrong decisions, using a more complex recognition algorithm and, as a consequence, increasing classification time. However, with a large quantity of data, this time may be considerably reduced by condensation of a set. Condensation of a set presented in this article is incremental, i.e. formation of the condensed reference set begins from a set containing one element. In each step, the size of the set is increased with one object. This algorithm consists in dividing the feature space with hyperplanes determined with pairs of the mutually furthest points. The hyperplanes are orthogonal to segments linking pairs of the mutually furthest points and they go through their centre.
Two algorithms of the reference set condensation, one of which is based on finding the mutually furthest points and the other is the modification of the Chang's algorithm, are respectively of the incremental and eliminative type, i.e. the size of the condensed set increases or is reduced as a result of a subsequent iteration. The combination of both aforementioned types of condensation, i.e. the cascade algorithm of condensation, is more effective than each of these algorithms executed sepa-rately.
PL
Dwa algorytmy kondesacji zbioru odniesienia, z których jeden jest oparty na znajdowaniu punktów wzajemnie najdalszych, a drugi jest modyfikacją algorytmu Changa, mają odpowiednio przyrostowy i eliminacyjnych charakter, tzn. w wyniku kolejnej iteracji wielkość skondensowanego zbioru odniesienia wzrasta lub jest redukowana. Kombinacja obu wymienionych typów kondensacji, tj. kaskadowy algorytm kondensacji, okazała się efektywniejsza od każdego z tych algorytmów działających samodzielnie.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.