Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  metal nanoparticles
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Catalytic activity of hexagonal MoO3modified with silver, palladium and copper
100%
EN
Catalytic activity of solvothermally-synthesized hexagonal molybdenum trioxide (h-MoO3) in epoxidation of 1-octene by tert-butyl hydroperoxide and the effect of deposition of metal (Ag, Pd, Cu) nanoparticles on the properties of catalyst have been investigated. It has been shown that silver-modified MoO3 demonstrates the highest catalytic activity and selectivity in the reaction of 1,2-epoxyoctane formation, whereas MoO3 modified with Pd nanoparticles exhibits worse catalytic performance than bare MoO3; by contrast, copper-modified MoO3 does not catalyze the epoxidation reaction. The Ag/MoO3 catalyst was also found to be active in the reaction of 1-octene oxidation by molecular oxygen at the initial stage of the oxidation process.
2
Content available remote Modyfikacja składu środków smarowych nanocząstkami metali
63%
|
2007
|
tom nr 2
283-291
PL
Przedstawiono badania wpływu dodatków w postaci nanoproszków miedzi lub molibdenu do olejów bazowych na właściwości tribologiczne skojarzeń materiałowych, charakterystycznych dla procesów obróbki skrawaniem. Stwierdzono zróżnicowanie tego wpływu w zależności od rodzaju oleju. Zbadano istotę nanoszenia nanocząstek metali na współpracujące powierzchnie elementów skojarzeń tribologicznych.
EN
Examination results are presented that show an influence of additives, like copper and molybdenum nanoparticles, to base oils on tribological properties of friction couples consisted of materials characteristic for machining processes. Differentiation of this influence was stated in dependence of the oil kind. The nature of metal nanoparticles deposition on cooperating surfaces of tribological elements was examined as well.
3
Content available remote Modyfikacja środków smarowych za pomocą nanocząstek metali
63%
|
2008
|
tom nr 2
309-319
PL
W artykule przedstawiono badania oddziaływania dodatków, w postaci nanocząstek miedzi lub molibdenu do olejów smarowych, na przebieg procesów tarciowych w wybranych skojarzeniach materiałowych. Zbadano wpływ wielkości cząstek metalu, stosowanych jako dodatek do oleju, na opory tarcia modelowego skojarzenia tribologicznego. Dokonano analizy oddziaływania modyfikatorów olejów smarowych w postaci nanocząstek miedzi lub molibdenu na opory tarcia oraz zużycie skojarzeń materiałowych, pracujących w warunkach tarcia ślizgowego przy smarowaniu za pomocą wybranych olejów bazowych. Wykorzystując metody mikroskopii skaningowej, wspomaganej mikroanalizą rentgenowską, dzięki zastosowaniu mikroanalizatora rentgenowskiego z układem dyspersji energii, ujawniono sposób oddziaływania, zawartych w oleju smarowym nanocząstek metali na współpracujące tarciowo powierzchnie elementów skojarzeń tribologicznych. Wyniki badań dowodzą korzystnego, na ogół, wpływu modyfikacji olejów smarowych, za pomocą nanocząstek miedzi lub molibdenu, na redukcję zużycia skojarzeń tarciowych.
EN
The paper presents the results of examination concerning the influence of additives to lubricants in the form of copper or molybdenum nanoparticles on the tribological process in selected pairs of materials. The influence of the metal particle size on the friction resistance of a model tribological couple was investigated. The effect of copper or molybdenum nanoparticles, used as lubricating oils modifiers, on the friction resistance and wear of couples working in selected base oils and in sliding friction conditions, was analysed. The nature of the interaction between metal nanoparticles introduced to oil and co-operating surfaces of the tribological couple was revealed using the scanning microscope with an X-ray microanalyser supported by an energy dispersion system. Obtained results allow stating that the modification of lubricating oils with the addition of metal nanoparticles in general advantageously influence tribological properties of frictional systems, decreasing wear of co-operating elements first of all.
4
Content available remote Metal nanoparticles and plants
51%
EN
Metal nanoparticles (MNPs) belong mostly to the engineered type of nanoparticles and have not only unique physical and chemical properties but also different biological actions. In recent years, noble MNPs and their nano-sized agglomerates (collectively referred to as nanoparticles or particles in the subsequent sections) have been the subjects of much focused research due to their unique electronic, optical, mechanical, magnetic and chemical properties that can be significantly different from those of bulk materials. To enhance their use, it is important to understand the generation, transport, deposition, and interaction of such particles. Synthesis of MNPs is based on chemical or physical synthetic procedures and by use of biological material ("green synthesis" as an environmentally benign process) including bacteria, algae and vascular plants (mainly metallophytes). In biological methods for preparation of metal nanoparticles mainly leaf reductants occurring in leaf extracts are used. MNPs can be formed also directly in living plants by reduction of the metal ions absorbed as a soluble salt, indicating that plants are a suitable vehicle for production of MNPs. These methods used for preparation of MNPs are aimed to control their size and shape. Moreover, physicochemical properties of MNPs determine their interaction with living organisms. In general, inside the cells nanoparticles might directly provoke either alterations of membranes and other cell structures or activity of protective mechanisms. Indirect effects of MNPs depend on their physical and chemical properties and may include physical restraints, solubilization of toxic nanoparticle compounds or production of reactive oxygen species. Toxic impacts of MNPs on plants is connected with chemical toxicity based on their chemical composition (eg release of toxic metal ions) and with stress or stimuli caused by the surface, size and shape of these nanoparticles. Positive effects of MNPs were observed on the following plant features: seed germination, growth of plant seedlings, stimulation of oxygen evolution rate in chloroplasts, protection of chloroplasts from aging for long-time illumination, increase of the electron transfer and photophosphorylation, biomass accumulation, activity of Rubisco, increase of quantum yield of photosystem II, root elongation, increase of chlorophyll as well as nucleic acid level and increase in the shoot/root ratio. However, it should be stressed that MNPs impact on human and environmental health remains still unclear.
PL
Ze względu na unikalne właściwości fizyczne i chemiczne, ale także różne działanie biologiczne nanocząstek metali (MNPS) są obiektem zainteresowania nowo powstałej inżynierii tych materiałów. W ostatnich latach MNPS metali szlachetnych (zbiorowo określane w dalszej części tekstu jako nanocząstki lub cząstki) były poddawane wielu badaniom ze względu na ich unikalne właściwości elektroniczne, optyczne, mechaniczne, magnetyczne i chemiczne, które mogą być znacząco różne od właściwości materiałów litych. Synteza MNPS polega na procesach chemicznych lub fizycznych oraz na wykorzystaniu materiału biologicznego ("zielona synteza" - proces przyjazny środowisku), w tym bakterii, glonów i roślin naczyniowych (głównie metalofitów). W biologicznych metodach wytwarzania nanocząstek metali używane są głównie substancje redukujące, występujące w ekstraktach z liści. MNPS również mogą być utworzone bezpośrednio w żywych roślinach przez redukcję jonów metali absorbowanych w postaci rozpuszczalnych soli, co wskazuje, że rośliny są odpowiednim środkiem produkcji MNPS. Metody te pozwalają na kontrolę rozmiarów i kształtu cząstek. Jest to ważne, ponieważ właściwości fizykochemiczne MNPS określają ich oddziaływanie z żywymi organizmami. Zwykle w komórkach nanocząstki mogą bezpośrednio wywoływać zmiany w błonach komórkowych albo w innych strukturach oraz mogą wpływać na aktywność komórek lub na ich mechanizmy ochronne. Pośrednio skutki działania MNPS zależą od ich właściwości fizycznych i chemicznych. Skutki te mogą obejmować ograniczenia fizyczne, rozpuszczanie toksycznych MNPS lub wytwarzanie reaktywnych form tlenu. Toksyczny wpływ MNPS na rośliny jest związany z toksycznością chemiczną, uzależnioną od składu chemicznego (np. uwalnianie toksycznych jonów metali) oraz ze stymulacją lub napięciami wywołanymi przez kontakt z powierzchnią. Istotne są także rozmiary i kształt nanocząstek. Pozytywne wpływy MNPS obserwowano na: kiełkowanie nasion, wzrost siewek roślin, stymulację tempa przemiany tlenu w chloroplastach, ochronę przed starzeniem chloroplastów wywołanym przez długotrwałe oświetlanie, zwiększenie transferu elektronów i fotofosforylacji, gromadzenie biomasy, aktywność RuBisCO, wzrost wydajności kwantowej fotosystemu II, wzrost korzeni, wzrost chlorofilu, jak również poziomu kwasów nukleinowych i stosunku długości pędów i korzeni. Jednak należy podkreślić, że wpływ MNPS na zdrowie ludzi i na środowisko jest nadal niejasny.
5
Content available remote Metal Nanoparticles and Plants / Nanocząstki Metaliczne I Rośliny
51%
EN
Metal nanoparticles (MNPs) belong mostly to the engineered type of nanoparticles and have not only unique physical and chemical properties but also different biological actions. In recent years, noble MNPs and their nano-sized agglomerates (collectively referred to as nanoparticles or particles in the subsequent sections) have been the subjects of much focused research due to their unique electronic, optical, mechanical, magnetic and chemical properties that can be significantly different from those of bulk materials. To enhance their use, it is important to understand the generation, transport, deposition, and interaction of such particles. Synthesis of MNPs is based on chemical or physical synthetic procedures and by use of biological material (“green synthesis” as an environmentally benign process) including bacteria, algae and vascular plants (mainly metallophytes). In biological methods for preparation of metal nanoparticles mainly leaf reductants occurring in leaf extracts are used. MNPs can be formed also directly in living plants by reduction of the metal ions absorbed as a soluble salt, indicating that plants are a suitable vehicle for production of MNPs. These methods used for preparation of MNPs are aimed to control their size and shape. Moreover, physicochemical properties of MNPs determine their interaction with living organisms. In general, inside the cells nanoparticles might directly provoke either alterations of membranes and other cell structures or activity of protective mechanisms. Indirect effects of MNPs depend on their physical and chemical properties and may include physical restraints, solubilization of toxic nanoparticle compounds or production of reactive oxygen species. Toxic impacts of MNPs on plants is connected with chemical toxicity based on their chemical composition (eg release of toxic metal ions) and with stress or stimuli caused by the surface, size and shape of these nanoparticles. Positive effects of MNPs were observed on the following plant features: seed germination, growth of plant seedlings, stimulation of oxygen evolution rate in chloroplasts, protection of chloroplasts from aging for long-time illumination, increase of the electron transfer and photophosphorylation, biomass accumulation, activity of Rubisco, increase of quantum yield of photosystem II, root elongation, increase of chlorophyll as well as nucleic acid level and increase in the shoot/root ratio. However, it should be stressed that MNPs impact on human and environmental health remains still unclear.
PL
Ze względu na unikalne właściwości fizyczne i chemiczne, ale także różne działanie biologiczne nanocząstek metali (MNPS) są obiektem zainteresowania nowo powstałej inżynierii tych materiałów. W ostatnich latach MNPS metali szlachetnych (zbiorowo określane w dalszej części tekstu jako nanocząstki lub cząstki) były poddawane wielu badaniom ze względu na ich unikalne właściwości elektroniczne, optyczne, mechaniczne, magnetyczne i chemiczne, które mogą być znacząco różne od właściwości materiałów litych. Synteza MNPS polega na procesach chemicznych lub fizycznych oraz na wykorzystaniu materiału biologicznego („zielona synteza” - proces przyjazny środowisku), w tym bakterii, glonów i roślin naczyniowych (głównie metalofitów). W biologicznych metodach wytwarzania nanocząstek metali używane są głównie substancje redukujące, występujące w ekstraktach z liści. MNPS również mogą być utworzone bezpośrednio w żywych roślinach przez redukcję jonów metali absorbowanych w postaci rozpuszczalnych soli, co wskazuje, że rośliny są odpowiednim środkiem produkcji MNPS. Metody te pozwalają na kontrolę rozmiarów i kształtu cząstek. Jest to ważne, ponieważ właściwości fizykochemiczne MNPS określają ich oddziaływanie z żywymi organizmami. Zwykle w komórkach nanocząstki mogą bezpośrednio wywoływać zmiany w błonach komórkowych albo w innych strukturach oraz mogą wpływać na aktywność komórek lub na ich mechanizmy ochronne. Pośrednio skutki działania MNPS zależą od ich właściwości fizycznych i chemicznych. Skutki te mogą obejmować ograniczenia fizyczne, rozpuszczanie toksycznych MNPS lub wytwarzanie reaktywnych form tlenu. Toksyczny wpływ MNPS na rośliny jest związany z toksycznością chemiczną, uzależnioną od składu chemicznego (np. uwalnianie toksycznych jonów metali) oraz ze stymulacją lub napięciami wywołanymi przez kontakt z powierzchnią. Istotne są także rozmiary i kształt nanocząstek. Pozytywne wpływy MNPS obserwowano na: kiełkowanie nasion, wzrost siewek roślin, stymulację tempa przemiany tlenu w chloroplastach, ochronę przed starzeniem chloroplastów wywołanym przez długotrwałe oświetlanie, zwiększenie transferu elektronów i fotofosforylacji, gromadzenie biomasy, aktywność RuBisCO, wzrost wydajności kwantowej fotosystemu II, wzrost korzeni, wzrost chlorofilu, jak również poziomu kwasów nukleinowych i stosunku długości pędów i korzeni. Jednak należy podkreślić, że wpływ MNPS na zdrowie ludzi i na środowisko jest nadal niejasny.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.