We compare six metaheuristic optimization algorithms applied to solving the travelling salesman problem. We focus on three classical approaches: genetic algorithms, simulated annealing and tabu search, and compare them with three recently developed ones: quantum annealing, particle swarm optimization and harmony search. On top of that we compare all results with those obtained with a greedy 2-opt interchange algorithm. We are interested in short-term performance of the algorithms and use three criteria to evaluate them: solution quality, standard deviation of results and time needed to reach the optimum. Following the results from simulation experiments we conclude that simulated annealing and tabu search outperform newly developed approaches in short simulation runs with respect to all three criteria. Simulated annealing finds best solutions, yet tabu search has lower variance of results and converges faster.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
This study investigated the compressibility of clay (Cc) for soft ground improvement and developed six optimized metaheuristic-based extreme learning machine (ELM) models (particle swarm optimization (PSO)-ELM, moth search optimization (MSO)-ELM, firefly optimization (FO)-ELM, cuckoo search optimization (CSO)-ELM, bees optimization (BO)-ELM, and ant colony optimization (ACO)-ELM) to predict Cc. A total of 739 laboratory tests were conducted to develop the models, and 517 datasets were used for training, while the remaining 222 samples were used for testing. The results showed that the accuracy of the developed models was improved by 3-5% compared to the original ELM model. The BO-ELM and MSO-ELM models were identified as the most effective models for predicting Cc, with accuracies ranging from 86.5% to 87%. The study suggests that the MSO-ELM model should be used if training time is critical. The developed models provide useful tools for predicting Cc, an essential parameter for soft ground improvement design, and can assist in the improvement of soft ground.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.