Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  metabasites
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The results of palaeomagnetic, rock magnetic, and microscopic study of Early Paleozoic metabasites and granulites from the Orlica Śnieżnik Dome (OSD, Sudetes) have been combined with geochronological data. In the eastern part of the OSD (Śnieżnik Massif, SM) ferrimagnetic pyrrhotite is prevalent, accompanied by various amounts of Fe-oxides. In the western part of the OSD (Orlica-Bystrzyca Massif, OBM) Fe-oxides dominate. All magnetic minerals originated during hydrothermal and weathering processes. The palaeomagnetic study revealed the presence of three secondary components of natural remanence: Late Carboniferous, Late Permian, and Mesozoic. Two Paleozoic components are related to volcanic activity in the Sudetes. They are carried by pyrrhotite and Fe-oxides and were isolated only in SM rocks. The Mesozoic component was determined in both parts of the OSD and is carried by Fe-oxides. It covers a time span, from ~160 to ~40 Ma, corresponding to a long period of alteration.
EN
The Leszczyniec Unit extends along the eastern margin of the Karkonosze-Izera Massif. It comprises the Early Palaeozoic, MORB-like Leszczyniec complex composed of metabasites, metagranites and metasedi- ments. The metabasites host magnetite mineralization encountered in Jarkowice, whereas near Wieściszowice village the pyrite deposit occurs in metasediments and metabasites. The common feature of both sites is the almost complete absence of the accompanying ore minerals. Basing on petrographic, mineralogical, geochemical and microstructural studies, it was found that the metabasic rocks, which host magnetite mineralization, were lava flows, whereas the protoliths of pyrite-bearing schists were basic and acid tuffites accompanied by ocean-floor basalts. The igneous rocks from the Leszczyniec Unit were subjected to the ocean-floor metamorphism, whereas the accompanying sediments were altered by hydrothermal fluids enriched in sulphur ions, which reacted with iron derived from the sediment and promoted crystallization of pyrite. The sources of hydrothermal fluids were adjacent magmatic centres. The estimated age ~480 Ma for pyrite (Re-Os method) is similar to the previously known ~500 Ma age of metabasites (U-Pb, zircon method) from the Leszczyniec Unit, which establishes a temporal link between pyrite accumulation and the ocean-floor environment. The rocks of the Leszczyniec Unit, first altered by the ocean-floor metamorphism and the hydrothermal fluids, were subsequently subjected to the regional metamorphism at 360–340 Ma and the two-stage deformations of various intensities, followed by the third stage of deformations which caused the reorientation of the regional foliation. The zones of ductile and brittle deformations connected with the second deformation event host the accumulations of magnetite formed at the expense of Fe-bearing rock-forming minerals or from iron supplied from adjacent sources. In the pyrite-bearing schists, mineral assemblages formed during the hydrothermal alteration have been subjected to recrystallization and were included into domains defining foliation and lineation, which formed during the first stage of deformation. Pyrite crystals were affected by both deformation stages. At the end of the second stage, the invasion of fluids led to the dissolution of pyrite crystals and to the filling of cracks in pyrite crystals with chalcopyrite and tennantite. This process was followed by the formation of quartz veins with minor amounts of ore minerals.
EN
Low- to medium-grade metabasites are the most abundant metaigneous rocks in the Early Palaeozoic metavolcanic (ąmetasedimentary) East Krkonoše (Karkonosze) Complex located at the Czech/Polish border in the central West Sudetes (NE Bohemian Massif). These mafic rocks are interpreted as metamorphosed equivalents of basic magmatites - both volcanics (lavas and pyroclastics) and subvolcanic intrusives. The correlation of lithostratigraphic units defined in the Czech (southern) and Polish (central and northern) parts of the East Krkonoše Complex is based on a comparison of the geochemical characteristics and petrography of the (1) The greenschists to greenstones (associated with abundant felsic metavolcanics) of the Czech East Krkonoše Complex, which are finely interfingered with low-grade metasediments, are correlated with the amphibolites forming small- to medium-sized bodies in medium-grade metasediments of the Polish East Karkonosze Complex. Both the low- and medium-grade metabasites are interpreted as comprising a range of metamorphosed tholeiitic, transitional and alkaline WPBs. (2) The largest mafic rock suite, which dominates the Polish part of the East Krkonoše Complex, has a dismembered promontory along the eastern margin of the East Krkonoše Complex Czech component. Most of these mafic rocks (blueschists, greenschists, greenstones and amphibolites) correspond to N- and E-MORBs. The above groups of rocks are broadly coeval and geochronologically overlap the Cambrian/Ordovician boundary. The similarity in magmatic ages and the diversity in geochemical features suggest that the East Krkonoše Complex metabasites are evidence for intracontinental rift development and the subsequent generation of incipient oceanic basin lithosphere in the NE Bohemian Massif during the Early Palaeozoic. Provided that the East Krkonoše Complex metabasites can be matched with similar rock suites in the West and Central European Variscides, their magmatic origin may be related to the rifting of northern Gondwana and large-scale break-up at the beginning of the Palaeozoic.
PL
W artykule przedstawiono wyniki badań surowców skalnych neolitycznych narzędzi kamiennych, pochodzących z sześciu stanowisk archeologicznych zlokalizowanych na obszarze Polski, należących do kultury ceramiki wstęgowej rytej. Przeprowadzono analizy petrograficzne surowców na mikroskopie polaryzacyjnym oraz badania mineralogiczne na mikroskopie elektronowym (SEM) z mikrosondą energetyczną (EDS) oraz na dyfraktometrze (XRD). Na podstawie porównania uzyskanych wyników z danymi literaturowymi, z dużym prawdopodobieństwem można stwierdzić, że badane surowce narzędzi wykazują największą zbieżność cech z metabazytami typu Jizerské hory, których neolityczne kopalnie odkryto na początku XXI w. w okolicach Tanvaldu (Masyw Czeski). Na tę proweniencję wskazuje również podobieństwo form narzędzi ze stanowisk archeologicznych do form występujących na obszarze neolitycznych kopalń, a także ich wiek. Przeprowadzone badania po raz pierwszy potwierdzają import narzędzi z metabazytów typu Jizerské hory na obszar Kujaw, Małopolski i Pomorza.
EN
The paper presents the results of rock material analysis of Neolithic stone tools from six archaeological sites located in the territory of Poland, which belong to the Linear Band Pottery Culture. The materials underwent a petrographic analysis on the polarising microscope and a mineralogical analysis on the electron microscope (SEM) with energetic microprobe (EDS). A diffractometer (XRD) was also used. As a result of comparative analysis of the results with literature data, it can be concluded with a high probability that the materials show the greatest similarity to the Jizerské hory-type metabasites mined in Neolithic mines discovered at the beginning of the 21st century near Tanvald (Bohemian Massif). This provenance is also indicated by both the similarity of the tools from archaeological sites to those found in the Neolithic mines, and their age. The research confirms for the first time that tools made of Jizerské hory-type metabasites were imported to the territory of Kujawy, Małopolska and Pomerania.
PL
Masyw amfibolitowy Niedźwiedzia, położony w południowo-wschodniej części bloku przedsudeckiego, stanowi jeden z największych paleozoicznych kompleksów metabazytów na Dolnym Śląsku. Badania petrograficzne, mineralogiczne i geochemiczne rdzeni wiertniczych oraz odsłonięć amfibolitów (m.in. oznaczenia składu chemicznego skał metodami XRF, INAA, ICP, a także minerałów na mikrosondzie elektronowej) dostarczyły nowych danych dotyczących ewolucji magmowej i metamorficznej masywu Niedźwiedzia. Stwierdzono występowanie różnych odmian petrograficznych i geochemicznych metabazytów oraz systematyczne zróżnicowanie ich cech w profilu pionowym. Wewnętrzną część budują głównie metabazyty toleitowe reprezentowane przez amfibolity granatowe, granatowo-piroksenowe i epidotowe oraz ich wysokomagnezowa odmiana wykształcona jako amfibolity zoizytowe. W stropie, obok metabazytów toleitowych, licznie pojawiają się metabazyty przejściowe oraz metaandezyty reprezentowane przez jasne amfibolity zwyczajne (plagioklazowo-hornblendowe) i biotytowe. Spągowa cześć zbudowana jest głównie z metabazytów toleitowych, rzadziej przejściowych, wykształconych jako amfibolity epidotowe. Petrografia i skład chemiczny minerałów wskazują, że metabazyty ulegały metamorfizmowi w warunkach zmieniających się od pogranicza facji eklogitowej, granulitowej i amfibolitowej (ok. 12,6 kbar, 774°C) do pogranicza facji amfibolitowej i zieleńcowej (ok. 6 kbar, 550°C). Protolitem metabazytów była intruzja zasadowych skał magmowych o chemizmie bazaltów typu N-MORB oraz bazaltów przejściowych o cechach oceanicznych toleitów wewnątrzpłytowych. Powstała ona prawdopodobnie w środowisku wąskiego basenu oceanicznego na etapie pośrednim między dojrzałą fazą rozwoju ryftu kontynentalnego a powstaniem otwartego oceanu.
EN
The Niedźwiedź amphibolite massif, situated in the Fore-Sudetic Block, represents one of the largest Palaeozoic metabasite complexes in Lower Silesia. The petrographic, mineralogical and geochemical studies of drill cores and field exposures (including chemical analyses of rocks and minerals by the XRF, INAA, ICPand EMPA methods) provided new data on the lithology and structure, and the magmatic and metamorphic evolution of the massif. The inner part of the massif consists of tholeiitic metabasites represented by garnet-, garnet-pyroxene-, and epidote amphibolites, and high-Mg metabasites represented by zoisite amphibolites. Towards the top there are abundant transitional metabasites and metaandesites represented by leucocratic common- and biotite amphibolites. The lower part of the massif consists of tholeiitic and transitional metabasites, both represented by epidote amphibolites. The metabasites were metamorphosed at conditions changing from the boundary of eclogite, granulite and amphibolite facies (ca. 12,6 kbar, 774°C) towards the boundary of amphibolite and greenschist facies (ca. 6kbar, 550°C). The protolith of the metabasites was an intrusion of basic igneous rocks chemically corresponding to N-MORB and transitional basalts similar to intraplate oceanic tholeiites. This intrusion probably originated in a narrow oceanic basin, in a setting transitional between a mature intra-continental rift and an open ocean.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.