In this paper, mesoscale modeling is performed to simulate and understand fracture behavior of two concrete composites: cement and asphalt concrete using disk-shaped compact tension (DCT) tests. Mesoscale models are used as alternative to macroscale models to obtain better realistic behavior of composite and heterogeneous materials such as cement and asphalt concrete. In mesoscale models, aggregate and matrix are represented as distinct materials and each material has its characteristic properties. Disk-shaped compact tension test is used to obtain tensile strength and fracture energy of materials. This test can be used as a better alternative to other tests such as three points bending tests because it is more convenient for both field and laboratory specimens in addition to its accurate results. Comparing the numerical results of the mesoscale models of cement and asphalt concrete specimens with experimental data shows that these models can predict the behavior of these composite materials very well as seen in the curves of load-crack mouth opening displacement (CMOD). Also, the mesoscale modeling highlights the variability of crack direction where it is dependent on the random distribution of aggregate.
W artykule przedstawiono wyniki prac związanych z konstrukcją odwzorowań zdjęć satelitarnych MSG (Meteosat Second Generation), zgodnych z projekcjami niehydrostatycznych modeli mezoskalowych typu COAMPS™ (Coupled Ocean/Atmosphere Mesoscale Prediction System) i Weather Research and Forecasting (WRF). System odbioru zdjęć MSG i model COAMPS™ zostały uruchomione i pracują w trybie operacyjnym w Zakładzie Geomatyki Stosowanej Wydziału Inżynierii Lądowej i Geodezji Wojskowej Akademii Technicznej. Celem prowadzonych prac jest umożliwienie automatyzacji analizy danych pochodzących z różnych źródeł w kontekście wpływu zachmurzenia, wilgotności atmosfery na refrakcję i wartość opóźnienia skośnego GPS. Prezentowana praca stanowi część badań związanych z operacyjnym wyznaczaniem opóźnienia skośnego.
EN
The paper presents the results of research concerning constructing projections of MSG (Meteosat Second Generation) satellite images compatible with projections of non-hydrostatic mesoscale models: COAMPS™ (Coupled Ocean/Atmosphere Mesoscale Prediction System) of the Naval Research Laboratory (NRL), and the WRF (Weather Research and Forecasting). The MSG imagery acquisition system and COAMPS™ model run in the operational mode in the Applied Geomatics Section of the Faculty of Civil Engineering and Geodesy, Military University of Technology. The research aim is to develop automated analysis of data originating from various sources for assessment of the impact of cloudiness (humidity) in the atmosphere on refraction and GPS slant delay. This work is a phase of research concerning operational methods of GPS slant delay determination.
A two-dimensional mesoscale model based on the concept of hybrid cellular automata is developed to study phase transformations in a complex phase steel during continuous cooling. The model is capable of simulating microstructure evolution with carbon diffusion in the volume and along grain boundaries, γ/α interfaces migration into austenite, as well as formation of bainite and martensite islands during intensive cooling in lower temperatures. In contrast to the classic statistical approaches which are based on the assumption of modeling one point in the material with homogeneous microstructure, the proposed phase transformations’ model in the mesoscale accounts for material heterogeneity. The simulation results in the form of a digital material representation with microstructures and maps showing the carbon concentration field as well as microhardness distribution are presented. One of the main advantages of the model is that has only seven adjustment coefficients that are used in the fitting process.
PL
Dwuwymiarowy mezoskalowy model oparty na koncepcji hybrydowych automatów komórkowych został opracowany w celu badania przemian fazowych w stali wielofazowej podczas ciągłego chłodzenia. Model umożliwia symulację rozwoju mikrostruktury wraz z dyfuzją węgla w objętości, jak i wzdłuż granic ziaren oraz migracją powierzchni międzyfazowych γ/α do austenitu, a także powstawaniem wysp bainitu i martenzytu podczas intensywnego chłodzenia w niższych temperaturach. W odróżnieniu od klasycznych podejść statystycznych, które bazują na założeniu modelowania jednego punktu w materiale o jednorodnej mikrostrukturze, zaproponowany model przemian fazowych w mezoskali umożliwia uwzględnienie warunków niejednorodności materiału. Zaprezentowano wyniki symulacji w postaci cyfrowej reprezentacji materiału z mikrostrukturami oraz mapami przedstawiającymi pola stężenia węgla oraz rozkłady mikrotwardości. Jedną z głównych zalet modelu jest to, że regulowany jest tylko za pomocą siedmiu współczynników w procesie dopasowania.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.