Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  mechanika orbitalna
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
2020
|
tom Vol. 24, nr 1
56--60
EN
The focus of this paper is the design of a selfmaintenance orbit using two natural forces against each other. The effect of perturbations due to Earth’s oblateness up to the third order on both the semi-major axis and eccentricity for a low Earth orbit satellite together with the perturbation due to air drag on the same orbital parameters were used, in order to create self-maintenance orbits. Numerical results were simulated for a low earth orbit satellite,which substantiates the applicability of the results.
2
Content available remote Optimal generalized Hohmann transfer with plane change using lagrange multipliers
100%
EN
The optimized orbit transfer of a space vehicle, revolving initially around the primary, in a similar orbit to that of the Earth around the Sun, in an elliptic trajectory, to another similar elliptic orbit of an adequate outer planet is studied in this paper. We assume the elements of the initial orbit to be that of the Earth, and the elements of the final orbit to be that of an outer adequate planet, Mars for instance. We consider the case of two impulse generalized Hohmann non coplanar orbits. We need noncoplanar (plane change) maneuvers mainly because: 1) a launch-site location restricts the initial orbit inclination for the vehicle; 2) the direction of the launch can influence the amount of velocity the booster must supply, so certain orientations may be more desirable; and 3) timing constraints may dictate a launch window that isn’t the best, from which we must make changes[3]. We used the Lagrange multipliers method to get the optimum of the total minimum energy required ΔVT , by optimizing the two plane change angles 1 and 2, where 1 is the plane change at the first instantaneous impulse at peri-apse, and 2 the plane change at the second instantaneous thrust at apo-apse. We adopt the case of Earth - Mars, as a numerical example.
3
Content available remote Optimum bi-impulsive non coplanar elliptic Hohmann type transfer
80%
EN
We optimize the Hohmann type bi-impulsive transfer between inclined elliptic orbits having a common center of attraction, for the four feasible configurations. Our criterion for optimization is the characteristic velocity ΔvT = Δv1 + Δv2 which is a measure of fuel consumption. We assigned the optimum value of our variable x (ratio between velocity after initial impulse and velocity before initial impulse) by a numerical solution of an algebraic eight degree equation. We have a single plane change angle α. We present terse new formulae constituting a new alternative approach for tackling the problem. The derivations of formulae of our treatment are simple, straightforward and exceptionally clear. This is advantageous. By this semi-analytic analysis we avoid many complexities and ambiguity that appear in previous work.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.