Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  mean value theorem
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Mean-value type equalities with interchanged function and derivative
100%
|
|
tom Nr 47
19--27
EN
According to a new mean value-theorem, if a func¬tion f satisfies the classical conditions ensuring the existence and uniqueness of Lagrange’s mean, then there also exists a unique mean M such that ...[wzór]. The main result gives necessary and sufficient conditions for the equality ...[wzór] The relevant equality for the Lagrange mean-value theorem is also considered.
2
Content available remote A note on a Cauchy-type mean value theorem
80%
|
2002
|
tom Vol. 35, nr 3
493-494
EN
We prove that a Cauchy-type mean value theorem [E. Wachnicki, Une variante du theoreme de Cauchy de la valeur moyenne, Demonstratio Math., 33 (4) (2000), 737-740] is a particular case of Flett's Mean Value Theorem [T. M. Flett, A mean value theorem, Math. Gazette 42 (1958), 38-39].
3
Content available remote Local cone approximations in optimization
60%
EN
We show how to use intensively local cone approximations to obtain results in some fields of optimization theory such as optimality conditions, constraint qualifications, mean value theorems and error bound.
4
Content available remote Generalizations of Lagrange and Cauchy Mean-Value theorems
51%
|
2010
|
tom Vol. 43, nr 4
765-774
EN
Some generalizations of the Lagrange Mean-Value Theorem and Cauchy Mean-Value Theorem are proved and the extensions of the corresponding classes of means are presented.
EN
In this paper, we show how to approximate the solution to the generalized time-fractional Huxley-Burgers’ equation by a numerical method based on the cubic B-spline collocation method and the mean value theorem for integrals. We use the mean value theorem for integrals to replace the time-fractional derivative with a suitable approximation. The approximate solution is constructed by the cubic B-spline. The stability of the proposed method is discussed by applying the von Neumann technique. The proposed method is shown to be conditionally stable. Several numerical examples are introduced to show the efficiency and accuracy of the method.
6
Content available remote Towards historical roots of necessary conditions of optimality: Regula of Peano
41%
EN
At the end of 19th century Peano discerned vector spaces, differentiability, convex sets, limits of families of sets, tangent cones, and many other concepts, in a modern perfect form. He applied these notions to solve numerous problems. The theorem on necessary conditions of optimality (Regula) is one of these. The formal language of logic that he developed, enabled him to perceive mathematics with great precision and depth. Actually he built mathematics axiomatically based exclusively on logical and set-theoretic primitive terms and properties, which was a revolutionary turning point in the development of mathematics.
7
Content available remote Mean-value theorems and some symmetric means
41%
EN
Some variants of the Lagrange and Cauchy mean-value theorems lead to the conclusion that means, in general, are not symmetric. They are symmetric iff they coincide (respectively) with the Lagrange and Cauchy means. Under some regularity assumptions, we determine the form of all the relevant symmetric means.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.