For a σ-ideal I of sets in a Polish space X and for A ⊆ $X^2$, we consider the generalized projection 𝛷(A) of A given by 𝛷(A) = {x ∈ X: A_x ∉ I}, where $A_x$ ={y ∈ X: 〈x,y〉∈ A}. We study the behaviour of 𝛷 with respect to Borel and analytic sets in the case when I is a $∑_{2}^{0}$-supported σ-ideal. In particular, we give an alternative proof of the recent result of Kechris showing that 𝛷 [$∑_{1}^{1}(X^2)]=∑_{1}^{1}(X)$ for a wide class of $∑_{2}^{0}$-supported σ-ideals.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We show that if T is an uncountable Polish space, X is a metrizable space and f : T → X is a weakly Baire measurable function, then we can find a meagre set M ⊆ T such that f [T ∖ M] is a separable space. We also give an example showing that “metrizable” cannot be replaced by “normal”.
We show that for a σ-finite diffused Borel measure in a nondiscrete locally bounded topological group there is a meager set whose complement is of measure zero.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.