In this paper, we present a simple algorithm for the reduction of a given bivariate polynomial matrix to a pencil form which is encountered in Fornasini-Marchesini's type of singular systems. It is shown that the resulting matrix pencil is related to the original polynomial matrix by the transformation of zero coprime equivalence. The exact form of both the matrix pencil and the transformation connecting it to the original matrix are established.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Linear time-invariant networks are modelled by linear differential-algebraic equations with constant coefficients. These equations can be represented by a matrix pencil. Many publications on this subject are restricted to regular matrix pencils. In particular, the influence of the Weierstrass structure of a regular pencil on the poles of its inverse is well known. In this paper we investigate singular matrix pencils. The relations between the Kronecker structure of a singular matrix pencil and the multiplicity of poles at zero of the Moore-Penrose inverse and the Drazin inverse of the rational matrix are investigated. We present example networks whose circuit equations yield singular matrix pencils.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper, we present a simple algorithm for the reduction of a given bivariate polynomial matrix to a pencil form which is encountered in Fornasini-Marchesini’s type of singular systems. It is shown that the resulting matrix pencil is related to the original polynomial matrix by the transformation of zero coprime equivalence. The exact form of both the matrix pencil and the transformation connecting it to the original matrix are established.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.