Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Ograniczanie wyników
Czasopisma help
Lata help
Autorzy help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 45

Liczba wyników na stronie
first rewind previous Strona / 3 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  materiały zmiennofazowe
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 3 next fast forward last
PL
Materiały ulegające przemianom fazowym obecnie poddawane są szerokiej analizie w zakresie możliwości ich wykorzystania. Opracowywane są modele symulujące wpływ materiałów zmiennofazowych (ang. PCM – Phase Change Materials) na wydajność cieplną budynku. Jednakże jako dane wejściowe brane są pod uwagę właściwości termiczne PCM-ów w typowych zakresach temperatur stosowanych w budownictwie. Według autorki referatu wprowadzone założenie prowadzi to do błędnych wyników symulacji. Na podstawie wstępnych rozważań stwierdzono, że gdy skład materiału ulega zmianie, jego właściwości cieplne muszą być mierzone w celu prawidłowego wykorzystania ich w narzędziach symulacyjnych. W referacie przedstawiono stanowisko doświadczalne oraz sposób wyznaczania współczynnika przewodzenia ciepła.
PL
W celu zwiększenia efektywności systemu grzewczego (SG), w ostatnim czasie w projektach takich systemów opartych na OŹE zaleca się wykorzystanie tzw. magazynów ciepła (MC). Z magazynowaniem ciepła związane są dwa istotne problemy: jest to konstrukcja wymiennika ciepła, a w przypadku materiałów zmiennofazowych metoda ich kapsułkowania. Ogólnie stosowanie MC jest rozwiązaniem bardzo drogim, i zdaniem Autorki publikacji obecnie nie jest ono opłacalne.
EN
In order to increase the efficiency of heating systems using renewable energies, recently it is recommended to use the so-called heat storage. There are two significant problems with heat storage: it is the design of the heat exchanger, and in the case of phase change materials, the method of their encapsulation. In general, the use of heat storage devices is a very expensive solution, and according to the author of the publication, it is currently not profitable.
PL
Praca dotyczy zagadnienia poprawy efektywności energetycznej budynków przez zastosowanie materiałów zmiennofazowych (PCM) jako dodatków do materiałów/elementów budowlanych. Materiały PCM, ze względu na przemianę fazową zachodzącą w zmiennych warunkach cieplnych, maja bardzo dużą pojemność cieplną, a tym samych zdolność do akumulacji energii (np. słonecznej), jak również zdolność do stabilizacji temperatury w pomieszczeniach. W pracy opisano metody wkomponowania materiałów PCM w konstrukcję budynku, jak również właściwości tych materiałów. Przedstawiono także wybrane wyniki badań prowadzonych w ITC PW, dotyczących zarówno właściwości kompozytów zawierających PCM jak i charakterystyk cieplnych elementów budowlanych wzbogaconych PCM.
EN
This paper is about increasing energy efficiency of buildings by usage of phase change materials (PCM) as an addition for building materials. Because of phase change - PCMs are able to store a big amount of energy (for example solar energy), PCMs are also useful for stabilization of the temperature in rooms. In this paper there are described ways of application of PCM into building structure, properties of the PCMs. There are also presented results of examination made in ITC PW, concerning both properties of PCM compounds and thermal characteristics of building elements with PCM addition.
PL
W niniejszym artykule przedstawiono przegląd metod akumulacji ciepła oraz dokonano ich porównania, a także wskazano główne cele stosowania magazynowania ciepła oraz wynikające z tego korzyści. Wyróżniane są trzy metody akumulacji ciepła: wykorzystanie ciepła jawnego, ciepła utajonego oraz ciepła pochłanianego i uwalnianego w czasie procesów chemicznych. Każda z metod charakteryzuje się innymi możliwościami akumulacji ciepła. Największą część artykułu poświęcono na omówienie drugiej metody, polegającej na wykorzystaniu ciepła przemian fazowych, ze względu na jej możliwości gromadzenia dużych ilości ciepła oraz szeroki zbiór potencjalnych zastosowań.
EN
This paper presents an overview of thermal energy storage methods and their comparison. The main goals of using thermal energy storage and benefits resulting from it were shown. There are three methods of heat accumulation: the use of sensible and latent heat and heat absorbed and released during chemical processes. Each method is characterized by different possibilities of heat accumulation. The largest part of the paper is about the second method, which uses phase change materials, due to its possibilities of storing large amount of heat and a wide range of potential applications.
EN
This paper describes basic properties and problems during utilization of phase changing materials. Many applications such materials are described: in power generation, district heating and buildings.
6
Content available remote Concept of waste heat storage from coal-fired power plants
88%
EN
This paper presents an original concept of using heat storage units in waste heat recovery systems for coal-fired power plants. An analysis of selection of the optimal phase change material (PCM) has been performed and a sample construction of a heat storage unit in a waste heat recovery system has been presented. The heat storage units are designed for storing heat in a form of so called latent heat of fusion or solidification, released during a phase change of PCM. The most frequently used PCMs, such as paraffin wax, hydrated salts, and fatty acids, as well as possibilities of using them in combination with a PCM encapsulation material have been described. The most frequently used constructions of PCM encapsulations have also been presented. Difficulties encountered when designing heat storage units and methods of eliminating them have been described. Sample applications of heat storage units have been given.
7
Content available remote Materiały zmiennofazowe (PCM) do zastosowań w budownictwie
88%
PL
W pracy omówiono zagadnienie poprawy efektywności energetycznej budynków przez zwiększenie pojemności cieplnej ich konstrukcji, wykorzystując do tego celu materiały zmiennofazowe PCM. Podano rodzaje materiałów PCM stosowanych w budownictwie, ich istotne właściwości fizyczne, a także wady i zalety. Omówiono też prace badawcze prowadzone w Instytucie Techniki Cieplnej PW w zakresie poprawy właściwości cieplnych materiałów budowlanych - elementów gipsowych lub cementowych - stosując dodatki z materiałów zmiennofazowych.
EN
In this paper, the possibility of using Phase Change Materials (PCM) as a means to enhance the heat capacity of water tanks is studied. Two different PCMs were investigated. The thermal properties of the PCMs were measured using the T-History-Method. As housing for the PCM, a special 3 layered foil with 2 plastic layers and a thin metal layer was found to be suitable. The PCM elements were found to be stable, even after 1000 freezing-melting cycles. A computational model for simulating the heat transfer of the PCM during the charging and discharging process was also established. The results of the simulation match closely with the measurement results. It was found, that to ensure sufficient heat output for domestic purposes, an optimal thickness of the PCM elements should be calculated. Lastly, the enhancement of the heat storage capacity was calculated for different usage scenarios.
PL
W pracy przedstawiono możliwości wykorzystania materiałów zmiennofazowych do zwiększania ilości ciepła magazynowanego w zbiornikach wody. Badano dwa różne materiały zmiennofazowe. Wyznaczono własności cieplne zastosowanych materiałów zmiennofazowych. Stwierdzono, że konstrukcja warstwowa materiałów zmiennofazowych umieszczonych w folii 3-warstwowej, z dwoma warstwami z folii i jednej metalowej jest najkorzystniejsza. Stwierdzono stabilność własności cieplnych elementów po 1000 cykli ładowania i rozładowania. Opracowany model symulacyjny dla wymiany ciepła podczas ładowania i rozładowania wykazuje dobrą zgodność z pomiarami. Stwierdzono, że należy dobierać odpowiednią grubość materiału zmiennofazowego dla zapewnienia odpowiedniej ilość ciepła w instalacji c.w. Stwierdzono zwiększenie ilości magazynowanego ciepła dla różnych scenariuszy użytkowania w stosunku do układów bez materiałów zmiennofazowych.
9
Content available remote Phase change materials for heat storage
75%
EN
In Czech Republic we can see is in present trend to use light-weight building materials for external or internal structures. The rooms, whose envelopes are made from light-weight materials, often don't execute requirements on the thermal stability in summer time. Increase of the thermal storage capacity of the building materials has a major effect on the thermal stability of indoor climate. This effect we can provide in the buildings with lightweight envelopes only by installation expensive air conditioning. Installation phase change materials is a one of the ways how to increase thermal storage properties of the light-weight envelopes. The principle instead of increase the mass of the envelopes is in utilization latent heat of the phase change materials with low melting point.
PL
W Czechach w obecnych czasach można zaobserwować tendencję do stosowania lekkich materiałów budowlanych do konstrukcji zewnętrznych i wewnętrznych. Pomieszczenia, których przegrody zostały wykonane z materiałów lekkich, często nie spełniają wymagań równowagi cieplnej w okresie letnim. Wzrost pojemności magazynowania ciepła materiałów budynku ma znaczny wpływ na stateczność cieplną klimatu wewnętrznego. Wpływ ten można zapewnić w budynkach o lekkiej konstrukcji tylko przez zainstalowanie drogiej klimatyzacji. Instalacja materiałów zmiennofazowych jest jednym ze sposobów wzrostu zdolności magazynowania ciepła w lekkich konstrukcjach. Główną zasadą jest w tym przypadku, zamiast zwiększenia masy przegrody, wykorzystanie ciepła utajonego materiału zmiennofazowego o niskim punkcie topnienia.
EN
Smart nanofibers based on PLA and PEG with the addition of clove oil (Eugenia caryophyllus) (EO) were obtained using the electrospinning technique. The nanofibers were characterized by SEM, FT-IR, TGA and DSC. For the PLA/PEG/EO composite (mass ratio 2/1/0.25), the temperature of the maximum decomposition rate was approximately 370°C. This composite exhibited good latent heat energy storage (melting enthalpy 77.5 J/g at 34.7°C). Smart nanofibers can be used as thermal regulators in medicine, electronics, and food and textile industries.
PL
Metodą elektroprzędzenia otrzymano inteligentne nanowłókna na bazie PLA i PEG z dodatkiem olejku goździkowego (Eugenia caryophyllus) (EO). Nanowłókna scharakteryzowano metodą SEM, FT-IR, TGA i DSC. Dla kompozytu PLA/PEG/EO (2/1/0,25) temperatura maksymalnej szybkości rozkładu wynosiła około 370°C. Kompozyt ten wykazywał dużą zdolność magazynowania energii cieplnej w postaci ciepła utajonego (entalpia topnienia 77,5 J/g w temperaturze 34,7°C). Dzięki tym właściwościom inteligentne nanowłókna mogą znaleźć zastosowanie jako termiczne regulatory w medycynie, elektronice oraz przemyśle spożywczym i tekstylnym.
EN
The paper presents the results of thermal conductivity measurement of gypsum-based composites incorporating microencapsulated phase change material (PCM). Samples of different concentration of PCM were analyzed in the temperature range typical for building indoor conditions. The investigation showed the major impact of both PCM content and temperature on thermal conductivity. The materials under investigation are used in manufacturing structure elements for building applications. Gypsum wallboards, thanks to the contribution of PCM, have substantially increased thermal capacity (thermal inertia); properly incorporated in the building envelope such materials can stabilize indoor temperature (thereby improving thermal comfort) and, as they operate as thermal energy storage elements, reduce energy requirements of buildings.
PL
W artykule opisano materiały budowlane zawierające substancje podlegające przemianom fazowym (PCM - Phase Change Material). Stała temperatura przemiany fazowej pozwala stabilizować temperaturę nie tylko poszczególnych pomieszczeń, ale również całych budynków, w których materiały te zostały zastosowane.
PL
W pracy przedstawiono pasywną metodę mającą na celu ograniczenie zapotrzebowania na energię do celów klimatyzacji, której istotą jest zwiększenie bezwładności cieplnej struktury budynku przez zastosowanie materiałów zmiennofazowych PCM. Opisano różne metody wkomponowania materiałów PCM w różne elementy budynku. Przedstawiono również wyniki badań eksperymentalnych wybranych typów zasobników ciepła z PCM pokazujące wpływ zwiększonej bezwładności cieplnej struktury budynku na stabilizację temperatury wewnątrz pomieszczeń. W szczególności opisano badania zasobnika ciepła/chłodu zbudowanego z kompozytu gipsowego z dodatkiem PCM zintegrowanego z systemem wentylacji budynku.
EN
The paper presents a passive method aimed at limiting the energy demand for air-conditioning purposes, the essence of which is to increase the thermal inertia of the building structure by using phase change materials, PCM. Different methods of incorporation of PCMs into various building elements are described. The results of experimental research on selected types of heat storage units with PCM showing the effect of increased thermal inertia of the structure of the building on the stabilization of indoor temperature were also presented. In particular, the research describes a heat cold storage unit produced of a gypsum composite with the addition of PCM, integrated with the building ventilation system.
14
Content available remote Badania możliwości magazynowania ciepła w prototypowym wymienniku akumulacyjnym
63%
PL
Zastosowanie materiałów zmiennofazowych jako substancji akumulujących ciepło jest jednym z istotnych kierunków badań nad magazynowaniem energii. Wykorzystanie ciepła utajonego pozwala opracować metody o wysokiej gęstości energii. Artykuł przedstawia konstrukcję oraz badania akumulacyjnego wymiennika ciepła, umożliwiającego zastosowanie materiałów zmiennofazowych w magazynowaniu ciepła. Urządzenie przeznaczone jest do instalacji wentylacyjnych i klimatyzacyjnych. Przybliżono ponadto tematykę magazynowania ciepła i wskazano dalszy kierunek prac nad rozwojem zaprezentowanego urządzenia.
EN
Application of phase change materials as heat accumulating substances is one of the most important directions of research into energy storage. Usage of latent heat may support development of methods with high energy density. The article presents construction and examinations of accumulative heat exchanger which facilitates the usage of phase changing materials in the process of heat accumulation. This device is designed for the use in air conditioning and ventilation systems, in which heat recovery is important. Furthermore, in the article there is explained the matter of heat storage and future direction of construction development.
PL
Współczesne budownictwo powinno charakteryzować się niezawodnością konstrukcyjną oraz dbałością o niskie zużycie energii. Czynniki te mają szczególne znaczenie w zapewnieniu komfortu użytkowania różnych budynków. W ramach komfortu cieplnego, ważnym jest, zwrócenie uwagi na zagadnienia dotyczące energooszczędnego projektowania zewnętrznych przegród budowlanych. Jednym z interesujących rozwiązań jest możliwość wkomponowywania w strukturę budynku innowacyjnych przegród budowlanych pozyskujących energię promieniowania słonecznego do poprawy bilansu cieplnego rozpatrywanego obiektu. W ramach niniejszego opracowania autorzy podjęli próbę modyfikacji przegrody kolektorowo-akumulacyjnej poprzez dodatkowe zastosowanie zmiennofazowej warstwy materiałowej. Dla jednego z dwóch wariantów wprowadzono dodatkowo warstwę izolacji aerożelowej. Prowadzone badania laboratoryjne pozwalają określić wpływ tej izolacji na ograniczenie strat ciepła w przegrodzie, w której zastosowano przeszklenie o niskiej izolacyjności termicznej.
EN
The contemporary building construction should be characterized by structural reliability and attention to low energy consumption. These factors are particularly important in ensuring comfort in various buildings. In order to ensure thermal comfort it is important to draw attention to issues related to the design of energy-efficient exterior building walls. One of the interesting solutions seems to incorporate building barriers which would absorb solar energy in order to enhance heat balance, into the building structure. In this work an attempt to modify thermal storage wall was made by the employment of the additional phase change material layer. For one of the two options the additional layer of aerogel insulation was incorporated. The conducted laboratory test allow for determining the influence of this insulation on reducing heat loss within a barrier where glazing of low thermal insulating power was used.
EN
The authors present a general idea of using inorganic salt hydrates in solar installations. A key role in this selection is played by thermophysical parameters, so the authors review their test methods and in turn characterize them for the most promising salt hydrates. Next, the authors describe the advantages and disadvantages of inorganic salt hydrates and indicate possibilities for their improvement. The use of salt hydrate converters in PV installations significantly improves the efficiency of photovoltaic modules. We show that at least 18 salt hydrates are promising for solar applications with the best ones being Sodium Hydrogen Phosphate Dodecahydrate, Sodium Carbonate Decahydrate and Calcium Chloride Hexahydrate. The selection of a test method for determining the thermophysical parameters of salt hydrates should be individual depending on the research objective. Comparing the methods presented, we believe that it is the DSC and DTA methods that provide the most accurate and repeatable results.
PL
Autorzy przedstawiają ogólną koncepcję wykorzystania nieorganicznych hydratów solnych w instalacjach solarnych. Kluczową rolę w tym doborze odgrywają parametry termofizyczne, dlatego autorzy dokonują przeglądu metod ich badania i kolejno charakteryzują je dla najbardziej obiecujących hydratów solnych i ich mieszanin. Następnie autorzy opisują zalety i wady nieorganicznych hydratów solnych oraz wskazują możliwości ich udoskonalenia. Zastosowanie konwerterów hydratów solnych w instalacjach PV znacząco poprawia sprawność modułów fotowoltaicznych. Wykazano, że co najmniej 18 hydratów soli i ich mieszanin jest obiecujących dla zastosowań solarnych ze względu na korzystne parametry termofizyczne, przy czym najlepsze z nich to dodekahydrat wodorofosforan sodu, dekahydrat węglanu sodu i heksadydrat chlorku wapnia. Z przeglądu literatury wynika, że wybór metody badawczej do określenia parametrów termofizycznych hydratów soli powinien być indywidualny w zależności od celu badań. Porównując przedstawione metody, stwierdzono, że to właśnie metody DSC i DTA dają najbardziej dokładne i powtarzalne wyniki.
17
Content available remote Materiały zmiennofazowe : właściwości, klasyfikacja, zalety i wady
63%
PL
Energia promieniowania słonecznego jest najbardziej atrakcyjną, z punktu widzenia środowiska, energią odnawialną. Wykorzystanie jej nie powoduje żadnych efektów ubocznych ani emisji szkodliwych substancji. Nie następuje zubożenie jej zasobów naturalnych. Energia promieniowania słonecznego jest energią łatwo dostępną, ale charakteryzującą się małą gęstością strumienia i dużą stochastycznością. Wśród problemów praktycznego wykorzystania tej energii jest konieczność zapewnienia możliwości gromadzenia nadmiaru ciepła w okresie dużego napromieniowania słonecznego, aby mogło być ono łatwo wykorzystywane w nocy lub innych okresach chłodnych. Podobne problemy występują w systemach odzysku ciepła odpadowego, w których dostępność ciepła i okresy użytkowania są różne. Gromadzenie ciepła z energii słonecznej może być również stosowane w większości budynków, w których koszty ogrzewania i energii elektrycznej są znaczące, co pozwoli na znaczne obniżenie kosztów eksploatacyjnych budynków. Jedną z potencjalnych technik magazynowania energii słonecznej jest zastosowanie materiałów zmiennofazowych PCM (phase change materials). Zgromadzono informacje na temat wymogów dotyczących stosowania tej technologii, klasyfikacji materiałów, ich dostępności, problemów i możliwych rozwiązań w budynkach.
EN
A review, with 56 refs., of inorg. and org. phase change materials used for solar energy storage.
PL
Oszczędzanie energii należy rozpocząć od racjonalnego nią gospodarowania. Jedno z rozwiązań, to magazynowanie nadwyżki energii w celu wypełnienia luki między podażą i popytem. Zastosowanie materiałów zmiennofazowych, w skrócie PCM (ang.: Phase Change Material), do magazynowania energii cieplnej spotkało się z dużym zainteresowaniem. W niniejszym artykule kontynuujemy zagadnienia podjęte we wcześniejszych publikacjach przedstawiając przykładowe kierunki badań oraz gotowe rozwiązania konstrukcyjne urządzeń wykorzystujące PCM, a służące zapewnieniu komfortu cieplnego w budynkach.
19
Content available remote Metody magazynowania energii - przegląd dostępnych technik
63%
PL
Uwzględniając dążenia do zwiększenia stopnia wykorzystania dostępnych zasobów energii (naturalnych, jak i wytworzonych przez człowieka), magazyny energii stanowią przedmiot wielu badań i innowatorskich rozwiązań dostosowanych do wielkości magazynu (np. domowy, lokalny), formy energii (np. ciepło, chłód, energia elektryczna) oraz innych uwarunkowań (np. ukształtowanie terenu). W artykule przedstawiono różne metody magazynowania energii, w małych i dużych zasobnikach (instalacje domowe, sieć elektroenergetyczna) oraz krótko- i długoterminowych (dni, miesiące, lata). Opisane metody wykorzystują zarówno układy mechaniczne oraz magnetyczne, jak i naturalne zasoby biologiczne, reakcje chemiczne. Największą grupę metod, najlepiej dostosowanych do wykorzystania w budownictwie, stanowią metody termiczne, których podstawą są zmiany temperatury i stanu skupienia czynników magazynujących ciepło. Na podstawie przeprowadzonej analizy można stwierdzić, że metody magazynowania energii umożliwiają zmniejszenie energochłonności procesów. W celu uzyskania optymalnej sprawności procesu należy dostosować wybraną metodę do dostępnych zasobów. Ze względu na skalę dostępności ciepła oraz stosunkowo mało skomplikowane układy, termiczne magazynowanie energii jest metodą najbardziej powszechną i możliwą do wykorzystania praktycznie we wszystkich rodzajach instalacji.
EN
Considering the tendency to use as much as possible available resources (natural and man-made), energy stores are the subject of many research and innovative solutions adapted to the scale of the magazine (eg home, local), energy forms (eg heat, cold , electricity) and available resources (eg terrain). The article presents different methods of energy storage, which allow its collection in small and large scale (home installations, power grid), short and long-term (days, months, years). Presented methods use both mechanical and magnetic systems as well as natural biological resources and chemical reactions. The widest group of methods, best suited for use in construction, are thermal methods based on the change of temperature and the physical state of the heat storage medium. On the basis of the analysis, it should be stated that energy storage methods significantly reduce the energy consumption of processes. In order to get the biggest efficiency, adjusted the chosen method to the available resources, is needed. Due to the scale of availability of heat and relatively low complexity, thermal energy storage is the most common area and possible to use in practically all installation areas.
PL
Przedstawiono najczęściej stosowane metody analizy termicznej (TA) do określania parametrów termofizycznych materiałów zmiennofazowych (PCM). Określenie właściwości termofizycznych, m.in. takich jak temperatura topnienia/krzepnięcia, temperatura rozkładu, entalpia, ciepło właściwe jest bardzo istotne przy wyborze danego materiału do konkretnych aplikacji. Przedstawione metody pozwalają na szybką analizę zjawisk i procesów zachodzących w materiałach pod wpływem temperatury oraz na ocenę przydatności tych materiałów do dalszych zastosowań.
EN
A review, with 19 refs., of methods for thermal anal. used to det. melting/freezing points, decompn. temps., enthalpy and heat capacity of phase change materials.
first rewind previous Strona / 3 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.