W artykule przedstawiono tłumiki magnetoreologiczne i ich zastosowania. Scharakteryzowano materiały magnetoreologiczne, takie jak ciecze i elastomery magentoreologiczne. Następnie przedstawiono rozwiązania konstrukcyjne tłumików z cieczą magnetoreologiczną oraz tłumików z elastomerami magnetoreologicznymi. W kolejnej części pracy zaprezentowano zastosowania tłumików magnetoreologicznych. Praca kończy się podsumowaniem.
EN
Paper presents the magnetorheological dampers and their applications. The magnetorheological materials: magnetorheological fluids and elastomers are described. Then, the construction solutions of magnetorheological dampers are presented. In the next part of the paper, the applications of magnetorheological dampers are depicted. The paper ends with conclusions.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Purpose: Results of experimental studies of a prototype magnetorheological damper at various magnitudes of control current as well as the manner of modelling electromagnetic phenomena occurring in the damper are presented in this paper. Design/methodology/approach: Model MR fluid was prepared using silicone oil OKS 1050 mixed with carbonyl iron powder CI. Furthermore, to reduce sedimentation, as stabilizers was added Aerosil 200. The observations of the surface morphology of carbonyl iron and fumed silica were carried out using Digital Scanning Electron Microscope SUPRATM25 ZEISS. The effect of magnetic field on magnetorheological fluid is modelled by the finite element method. Findings: The presented model meets the initial criteria, which gives ground to the assumption about its usability for determining the dynamics properties of mechanical systems, employing the finite element method using ANSYS software. Research limitations/implications: The elaborated model can be use for modelling the semi active car suspension dynamics. Originality/value: The actual-non-linear characteristics of magnetisation identified experimentally were used as the values of relative magnetic permeability of the piston housing material. The possibility of application, e.g. real characteristics of material magnetisation and faster and faster calculation machines make possibility the creation of more precise models and more adequate ones to reality.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Purpose: This paper presents basic properties of the magnetorheological fluids (MR) and their development in recent years. A variety of still growing practical applications in mechanical devices are presented. Design/methodology/approach: The theoretical research results of the properties and applications obtained in the past decades and progressed in recent years are reviewed. Findings: It is very clearly and well understood from the presented paper that replacement of the traditional devices with active, smart system better adapted to the environment stimulus are necessary. Many of them will include MR fluids as active component. Research limitations/implications: MR fluids with excellent properties can be applied in various fields of civil engineering, safety engineering, transportation and life science. They offer an outstanding capability of active control of mechanical properties. Practical implications: A very useful material for the engineers engaged in the design of brakes, dampers, clutches and shock absorbers systems. Originality/value: This article describes an up-to-date MR materials development and their application in civil engineering. The advantage of the smart systems over nowadays solutions becomes the direction of the researches and designing of 21st century devices.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.