Purpose: The main aim of this article was to present the investigation results of magnetorheological fluids (MR) composed of carbonyl iron (CI) particles and analyse their flow behaviour in terms of the internal structure formation by a control of applied external magnetic field. The morphology, magnetic properties, sedimentation stability, and magnetorheological properties of the examined MR fluids were studied. Design/methodology/approach: Model MR fluid was prepared using silicone oil OKS 1050 mixed with carbonyl iron powder CI. Furthermore, to reduce sedimentation Aerosil 200 was added as stabilizers. In the purpose to determine the properties of the analyzed fluids the sedimentation and dynamic viscosity were investigated. Findings: Dynamic viscosity of investigated magnetorheological fluids rapidly and reversibly change in response to the applied external magnetic field. Moreover added particles of fumed silica inhibited sedimentation of carbonyl iron particles. Research limitations/implications: MR fluids with excellent properties can be applied in various fields of civil engineering, safety engineering, transportation and life science. They offer an outstanding capability of active control of mechanical properties. But there are no systematic published studies of factors affecting the durability of MR fluids and devices. There is very little information on the effects of exposing different MR fluids to temperature, for this reasons further efforts are needed in order to obtain even better results. Originality/value: The investigation results are reliable and could be very useful both for designers and the practitioners of many branches of industry.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Purpose: Results of experimental studies of a prototype magnetorheological damper at various magnitudes of control current as well as the manner of modelling electromagnetic phenomena occurring in the damper are presented in this paper. Design/methodology/approach: Model MR fluid was prepared using silicone oil OKS 1050 mixed with carbonyl iron powder CI. Furthermore, to reduce sedimentation, as stabilizers was added Aerosil 200. The observations of the surface morphology of carbonyl iron and fumed silica were carried out using Digital Scanning Electron Microscope SUPRATM25 ZEISS. The effect of magnetic field on magnetorheological fluid is modelled by the finite element method. Findings: The presented model meets the initial criteria, which gives ground to the assumption about its usability for determining the dynamics properties of mechanical systems, employing the finite element method using ANSYS software. Research limitations/implications: The elaborated model can be use for modelling the semi active car suspension dynamics. Originality/value: The actual-non-linear characteristics of magnetisation identified experimentally were used as the values of relative magnetic permeability of the piston housing material. The possibility of application, e.g. real characteristics of material magnetisation and faster and faster calculation machines make possibility the creation of more precise models and more adequate ones to reality.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.