Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  materiał aktywny
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Problems connected with the use of iron metal in reactive barrier
100%
EN
The redox reactions proceeded on an iron metal used as a reactive material in PRB Technology (Permeable Reactive Barriers Technology) were presented and described in the paper. These processes are: chemical detoxification of halogenated hydrocarbons and precipitation of heavy metals mainly. Moreover the problems connected with precipitate formation in that material and blocking up of the reactive barrier were described. On the basis of the laboratory test the changes of pH, oxidation-reduction potential (ORP), and dissolved oxygen (DO) concentration which accompany precipitate formation were demonstrated. At the end of the paper the pyrite was proposed to use as a materiał that could solve above mentioned problems. It can be easily available in large quantities from mine working.
PL
W artykule przedstawiono i opisano procesy redox, przebiegające na powierzchni żelaza metalicznego użytego jako materiał aktywny w technologii PRB. Do procesów tych należą: chemiczna detoksykacja węglowodorów halogenowanych oraz wytrącanie jonów metali ciężkich. Ponadto, opisano problemy związane z wytrącaniem się różnych związków w barierze aktywnej i jej blokowaniem oraz przedstawiono, na podstawie badań laboratoryjnych, zmiany: pH, potencjału utleniaj ąco-redukcyjnego, stężenia rozpuszczonego tlenu, które towarzyszą temu wytrącaniu. Na zakończenie wskazano piryt jako materiał, który mógłby rozwiązać przedstawione problemy. Jest on minerałem dostępnym w dużych ilościach podczas procesów wzbogacania węgla kamiennego
2
84%
PL
W technologii PRB zanieczyszczenia usuwane są bezpośrednio w warstwie wodonośnej przez przepływ skażonego strumienia wód podziemnych przez wypełnioną odpowiednim materiałem (aktywnym) barierę aktywną. W artykule, na podstawie modelowania hydrogeologicznego prowadzonego za pomocą programu VISUAL MODFLOW, przedstawiono i udowodniono następującą zasadę: aby zwiększyć skuteczność działania typu Funnel-and-Gate Open technologii PRB przez zwiększenie szerokości strefy oczyszczania, stosunek współczynnika filtracji materiału aktywnego do współczynnika filtracji warstwy wodonośnej (kma/kww) powinien przyjąć wartość 6. W pracy wzięto jednak pod uwagę możliwość napływu drobnych cząstek do bariery aktywnej, wytrącania się osadów w materiale aktywnym oraz nadmiernego przyrostu biomasy, które to czynniki mogą zmniejszyć zdolność filtracyjną materiału aktywnego. W konsekwencji założono więc, w zgodzie z pracami [1, 2], iż stosunek kma/kww powinien wynosić 10. Rozwiązanie to daje pewność, że zmniejszenie się wartości współczynnika filtracji materiału aktywnego na skutek przemian geochemicznych i biochemicznych oraz napływu cząstek, nie wpłynie na szerokość strefy oczyszczania. Przedstawione rozwiązanie może więc zapewnić skuteczne i długotrwałe oczyszczanie wód podziemnych w typie Funnel-and-Gate technologii PRB.
EN
PRB technology is a technique of groundwater remediation where contaminants are removed from an aąuifer by the flow through a permeable reactive barrier (PRB) filled with a special material called a "reactive material". In this paper, on the basis of hydrogeologie modelling run with the use of VISUAL MODFLOW program, the following rule was presented and proved: in order to inerease PRB efficacy (in Funnel-and-Gate Open System) by inereasing the hydraulic capture zone width, the ratio of the reactive materiał hydraulic conductivity to the aąuifer hydraulic conductivity (kma/kww) should take the value of six. Due to inflows of particles into reactive materiał, precipitate formation and biomass creation in it, the author took into consideration the possibilities of reduction the hydraulic conductivity of reactive materiał. Therefore, it was assumed, according to papers [1, 2], that the ratio of kma/kww should amount to 10. This value gives certainty that reduction in reactive materiał hydraulic conductivity due to geochemical and biochemical processes, and inflows of particles into reactive materiał, will not impact on the hydraulic capture zone width. The above mentioned solution can ensure effective and long-lasting treatment process in reactive barrier of Funnel-and-Gate Open System.
EN
Results of studies on the synthesis, characterization and applications of activated carbons from polymeric materials, including polymer wastes, were presented. The major methods of polymer carbonization were described as well as of their activation by different activators such as KOH, CO2 and H2O. Carbons of very good porous structure parameters could be obtained from sulfonated styrene-divinylbenzene resins and polyvinylidene chloride but also from polyethylene terephthalate that represents polymer wastes. Methods for physicochemical characterization of activated carbons obtained from polymers were briefly presented, mainly in relation to their adsorption properties. One of the best activated carbons obtained from sulfonated styrene-divinylbenzene resin had the specific surface area close to 4000 m2/g, total pore volume of about 2.1 cm3/g and could adsorb 40 wt % CO2 per 1 gram of carbon at 0°C and under the pressure of 1 bar, and also 4 wt % H2 per 1 gram of carbon at –196°C, under the pressure of 1 bar. Potential applications of these activated carbons for adsorption of CO2 and H2 as well as CH4, C6H6, NO, CO, O2, SO2 and NH3 were also presented. Activated carbons obtained from polymer wastes could also be used for adsorption of dyes, herbicides, trace metal ions from water as well as adsorption of volatile organic compounds from the air. Attempts at the use of activated carbons for battery electrode and supercapacitor construction are also interesting. Activated carbons from polymeric materials attract a lot of attention due to their high specific surface area and large pore volume combined with large-scale and low-cost production.
PL
Przedstawiono wyniki badań dotyczących wytwarzania, charakteryzacji i zastosowania węgli aktywnych otrzymanych z materiałów polimerowych, w tym z polimerów odpadowych. Opisano najważniejsze metody karbonizacji polimerów, a następnie ich aktywacji za pomocą różnych czynników aktywujących, takich jak KOH, CO2 i H2O. Wykazano, że węgle o bardzo dobrych parametrach struktury porowatej można otrzymać z sulfonowanej żywicy styrenowo-diwinylobenzenowej oraz z poli(chlorku winylidenu), a spośród polimerów odpadowych – z poli(tereftalanu etylenu). Opisano metody badań właściwości fizykochemicznych węgli aktywnych otrzymanych z polimerów, w tym przede wszystkim ich właściwości adsorpcyjnych. Jeden z najlepszych węgli aktywnych otrzymany z sulfonowanej żywicy styrenowo-diwinylobenzenowej miał powierzchnię właściwą bliską 4000 m2/g, całkowitą objętość porów 2,1 cm3/g i był w stanie zaadsorbować 40% wag. CO2 na gram węgla w temperaturze 0°C pod ciśnieniem 1 bar oraz 4% wag. H2 na gram węgla w temperaturze –196°C pod ciśnieniem 1 bar. Przedstawiono możliwości wykorzystania węgli aktywnych otrzymanych z materiałów polimerowych do adsorpcji CO2 i H2, ale również do adsorpcji CH4, C6H6, NO, CO, O2, SO2 i NH3. Węgle otrzymane z polimerów odpadowych mogą być wykorzystane do adsorpcji barwników, herbicydów, jonów metali śladowych z wody oraz lotnych związków organicznych z powietrza. Interesujące są również próby wykorzystywania tych węgli do budowy elektrod baterii i superkondensatorów. Węgle aktywne otrzymywane z materiałów polimerowych cieszą się dużym zainteresowaniem, ponieważ mają bardzo dużą powierzchnię właściwą, dużą objętość porów, a jednocześnie są produkowane w dużych ilościach i mają przystępną cenę.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.