In masked priming, a briefly presented prime stimulus is followed by a mask, which in turn is followed by the task-relevant target. Under certain conditions, negative compatibility effects (NCEs) occur, with impaired performance on compatible trials (where prime and target indicate the same response) relative to incompatible trials (where they indicate opposite responses). However, the exact boundary conditions of NCEs, and hence the functional significance of this effect, are still under discussion. In particular, it has been argued that the NCE might be a stimulus-specific phenomenon of little general interest. This paper presents new findings indicating that the NCE can be obtained under a wider variety of conditions, suggesting that it reflects more general processes in motor control. In addition, evidence is provided suggesting that prime identification levels in forced choice tasks - usually employed to estimate prime visibility in masked prime tasks - are affected by prior experience with the prime (Exp. 1) as well as by direct motor priming (Exp. 2 & 3).
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
According to the sensorimotor supremacy hypothesis, conscious perception draws on motor action. In the present report, we will sketch two lines of potential development in the field of masking research based on the sensorimotor supremacy hypothesis. In the first part of the report, evidence is reviewed that masked, invisible stimuli can affect motor responses, attention shifts, and semantic processes. After the review of the corresponding evidence - so-called masked priming effects - an approach based on the sensorimotor supremacy hypothesis is detailed as to how the question of a unitary mechanism of unconscious vision can be pursued by masked priming studies. In the second part of the report, different models and theories of backward masking and masked priming are reviewed. Types of models based on the sensorimotor hypothesis are discussed that can take into account ways in which sensorimotor processes (reflected in masked priming effects) can affect conscious vision under backward masking conditions.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Arrow cues and other overlearned spatial symbols automatically orient attention according to their spatial meaning. This renders them similar to exogenous cues that occur at stimulus location. Exogenous cues trigger shifts of attention even when they are presented subliminally. Here, we investigate to what extent the mechanisms underlying the orienting of attention by exogenous cues and by arrow cues are comparable by analyzing the effects of visible and masked arrow cues on attention. In Experiment 1, we presented arrow cues with overall 50% validity. Visible cues, but not masked cues, lead to shifts of attention. In Experiment 2, the arrow cues had an overall validity of 80%. Now both visible and masked arrows lead to shifts of attention. This is in line with findings that subliminal exogenous cues capture attention only in a top-down contingent manner, that is, when the cues fit the observer's intentions.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Visual backward masking is frequently used to study the temporal dynamics of visual perception. These dynamics may include the temporal features of conscious percepts, as suggested, for instance, by the asynchronous-updating model (Neumann, 1982) and perceptual-re-touch theory (Bachmann, 1994). These models predict that the perceptual latency of a visual backward mask is shorter than that of a like reference stimulus that was not preceded by a masked stimulus. The prediction has been confirmed by studies using temporal-order judgments: For certain asynchronies between mask and reference stimulus, temporal-order reversals are quite frequent (e.g. Scharlau, & Neumann, 2003a). However, it may be argued that these reversals were due to a response bias in favour of the mask rather than true temporal-perceptual effects. I introduce two measures for assessing latency effects that (1) are not prone to such a response bias, (2) allow to quantify the latency gain, and (3) extend the perceptual evidence from order reversals to duration/interval perception, that is, demonstrate that the perceived interval between a mask and a reference stimulus may be shortened as well as prolonged by the presence of a masked stimulus. Consequences for theories of visual masking such as asynchronous-updating, perceptual-retouch, and reentrant models are discussed.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In spite of the excellent temporal resolution of event-related EEG potentials (ERPs), the overlapping potentials evoked by masked and masking stimuli are hard to disentangle. However, when both masked and masking stimuli consist of pairs of relevant and irrelevant stimuli, one left and one right from fixation, with the side of the relevant element varying between pairs, effects of masked and masking stimuli can be distinguished by means of the contralateral preponderance of the potentials evoked by the relevant elements, because the relevant elements may independently change sides in masked and masking stimuli. Based on a reanalysis of data from which only selected contralateral-ipsilateral effects had been previously published, the present contribution will provide a more complete picture of the ERP effects in a masked-priming task. Indeed, effects evoked by masked primes and masking targets heavily overlapped in conventional ERPs and could be disentangled to a certain degree by contralateral-ipsilateral differences. Their major component, the N2pc, is interpreted as indicating preferential processing of stimuli matching the target template, which process can neither be identified with conscious perception nor with shifts of spatial attention. The measurements showed that the triggering of response preparation by the masked stimuli did not depend on their discriminability, and their priming effects on the processing of the following target stimuli were qualitatively different for stimulus identification and for response preparation. These results provide another piece of evidence for the independence of motor-related and perception-related effects of masked stimuli.
6
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The present study concentrates on the organization of the mental lexicon with regard to semantic transparency in the representation of Polish compounds. Its aim was to test current approaches to the processing of morphologically complex words in a lexical decision experiment with the use of visually presented Polish compound and simple words. The existing psycholinguistic approaches centre around the same question: are complex words parsed into their constituent parts or are they stored as full-word representations in the human mental lexicon? I referred to five widely acknowledged models of morphological processing to account for the outcomes of the present study. The data reveal that: (i) transparent compounds primed by words semantically related to the heads of these transparent compounds elicited faster response times than opaque compounds within the same condition; and (ii) priming speeds up the processing for both transparent and opaque compounds. The results indicate that the processing of Polish compound words is influenced by semantic transparency and that both transparent and opaque compounds are decomposed into their constituents prior to lexical access.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.