We give a class of Fourier multipliers with non-symmetric symbols and explicit norm bounds on Lp spaces by using the stochastic calculus of Lévy processes and Burkholder–Wang estimates for differentially subordinate martingales.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The vector-valued T(1) theorem due to Figiel, and a certain square function estimate of Bourgain for translations of functions with a limited frequency spectrum, are two cornerstones of harmonic analysis in UMD spaces. In this paper, a simplified approach to these results is presented, exploiting Nazarov, Treil and Volberg's method of random dyadic cubes, which allows one to circumvent the most subtle parts of the original arguments.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In the present paper we introduce the notion of strongly orthogonal martingales. Moreover, we show that for any UMD Banach space X and for any X-valued strongly orthogonal martingales M and N such that N is weakly differentially subordinate to M, one has, for all 1 < p < 1, [formula] with the sharp constant χp;X being the norm of a decoupling-type martingale transform and lying in the range, [formula], where βp;X is the UMDp constant of X, hp;X is the norm of the Hilbert transform on Lp(R; X), [formula] are the Gaussian decoupling constants.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.