Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  marker making
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The objective of this research is to conduct a comparison in pattern and marker making between the CAD and manual methods as regards individual course steps and total time values, and to determine the effective of model complexity on these times. For this purpose, four models starting from the simplest to the most complex were designed, and the course steps of the traditional manual method and CAD were first established. Each course step was carried out repeatedly by an expert according to statistical norms. In order to determine in which steps and for which model CAD can be more productive, the data obtained for both methods was compared with respect to the individual time value of each course step and the total time values. Furthermore, the possible causes of the results obtained were discussed and suggestions were put forward.
PL
Wykonano analizę porównawczą przygotowania wykrojów wzorników, stosowanych w produkcji odzieży metodami ręcznymi i wspomaganymi komputerowo (CAD). W odniesieniu do indywidualnych kroków postępowania przygotowawczego i całkowitego czasu realizacji, a tym samym określenia efektywności obydwu postępowań. W tym celu przygotowano cztery modele odzieży, począwszy od najprostszych do bardziej skomplikowanych oraz określono kroki dla obydwu metod. Każdy krok był wykonywany wielokrotnie przez ekspertów, zgodnie z normami statystycznymi. W celu określenia, w którym kroku i dla którego modelu wspomaganie komputerowe może być bardziej efektywne, dane uzyskane dla obydwu metod były porównane ze sobą. Wyniki zostały poddane krytycznej dyskusji zakończonej sprecyzowaniem odpowiednich sugestii.
EN
In the apparel manufacturing, fabric utilization always remains the significant apprehensions in controlling the production expenditure. Alteration in pattern shapes and marker preparation leads to the enormous utilization of fabric. The purpose of this research is to study fabric efficiency in correspondence with four different human body shapes in both genders. Two clothing styles, fitted trousers and fitted shirts, were processed conventionally in the garment manufacturing company. The comparative study of auto-marker and manual-marker making through Garment Gerber Technology (GGT) software were also accomplished. The evaluation of fabric consumptions, marker efficiency, marker loss, fabric loss, and fabric cost relevant to four different body shapes was analyzed for both women and men. The investigation carried out in this article concludes that there are differences in fabric consumptions, efficiencies, and cost-effectiveness relative to body shapes. The result revealed that the manualmarker of trousers for triangular body shape in women’s wears has the least fabric consumption (most cost-effective), whereas the shirt’s auto-marker for an oval body shape in men’s wears has the most fabric utilization (least costeffective). The manual-virtual-marker making is efficient (significant p-value) than auto-generated-markers. Also, fabric utilization for women’s garments is cost-effective than that for men. Trousers are cost-effective compared to the shirts.
3
Content available remote Hyper-Heuristic Approach for Improving Marker Efficiency
80%
EN
Marker planning is an optimization arrangement problem, where a set of cutting parts need to be placed on a thin paper without overlapping to create a marker – an exact diagram of cutting parts that will be cut from a single spread. An optimal marker that utilizes the length of textile material has to be obtained. The aim of this research was to develop novel algorithms for obtaining an efficient marker that would achieve competitive results and optimize the garment production in terms of improving the utilization of textile material. In this research, a novel Grid heuristic was introduced for obtaining a marker, alongside its improvement methods: Grid-BLP and Grid-Shaking. These heuristics were hybridized with genetic algorithm that determined the placement order of cutting parts using the newly introduced All Equal First (AEF) placement order. A novel individual representation for genetic algorithm was designed that was composed of order sequence, rotation detection and the choice of placement algorithm (hyper-heuristic). Experiments were conducted to determine the best marker making method, and hyper-heuristic efficiency. The implementation and experiments were conducted in MATLAB using GEATbx toolbox on five datasets from the garment industry: ALBANO, DAGLI, MAO, MARQUES and MAN SHIRT. Marker efficiency in percentage was recorded with best results: 84.50%, 80.13%, 79.54%, 84.67% and 86.02% obtained for the datasets respectively. The most efficient heuristic was Grid-Shaking. Hyper-heuristic applied Grid-Shaking in 88% of times. The created algorithm is independent of cutting parts’ shape. It can produce markers of arbitrary shape and is flexible in terms of expansion to new instances from the garment industry (leather nesting, avoiding damaged areas of material, marker making with materials with patterns).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.