Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  macierz korelacji
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer; and is one of the leading causes of death in the world. Surgery combined with chemotherapy is the recommended treatment for NSCLC. Since chemotherapy is an expensive treatment for either medical staff or patients suffering from pain, this study attempts to construct an intelligent predictive model to predict the adjuvant chemotherapy (ACT) effectiveness/ futileness in the patients, in order to help futile cases for unnecessary applications. There is a 2-step method: preprocessing and predicting. First a purposefully preprocessing tech-nique: chi-square test, SVM-RFE and correlation matrix, were employed in NSCLC gene expression dataset as a novel multi-layered feature selection method to defeat the curse of dimension and detect the chemotherapy target genes from tens of thousands features, based on which the patients can be classified into two groups, with NB classifier at second step. 10-Fold cross-validation was found with accuracy of 68.93% for 2 genes, TGFA (205015_s_at) and SEMA6C (208100_x_at), which is preferable compared to earlier studies, even though more than 2 input features are employed for the prediction. According to the results found in this study, one can concludes that the multi-layered feature selection approach has increased the classification accuracy in terms of finding the fitted patient for receiving ACT by reducing the number of features and has significant power to be used in medical datasets with small train samples and large number of features.
|
|
tom Nr 66
71--74
PL
Dla dwuwymiarowego modelu pomiaru zostaną zaprezentowane przykłady zostaną Zaprezentowane przykłady rozkładów, których sploty generują rozkłady wypadkowe dla dwuwymiarowego modelu pomiaru. W ogólności zmienne wejściowe jako zmienne losowe mogą być skorelowane co wpływa na kształt i położenie obszaru rozszerzenia który wyznacza obszar niepewności pomiaru. Dla wielkości wejściowych będących zmiennymi losowymi o rozkładzie Gaussa podano wzory analityczne pozwalające obliczyć długości półosi elipsy - modelu obszaru niepewności dla wielkości wyjściowych. Również metodą Monte Carlo wyznaczone zostaną obszary rozszerzenia dla modelu dwuwymiarowego dla przyjętego prawdopodobieństwa 95 %. Wyniki symulacji zostaną przedstawiona na trójwymiarowych wykresach uzyskanych z projekcji plików graficznych .fig (środowisko Matlab). Zaprezentowane zostaną także obszary rozszerzenia wyznaczone metodą Monte Carlo dla innych rozkładów, powstałych w wyniku splotu rozkładu normalnego i prostokątnego, a także dwóch rozkładów prostokątnych które nie mają trywialnego rozwiązania analitycznego. Dokonana będzie ocena uzyskanych symulacji numerycznych.
EN
In this work a few examples of typical distributions have been used for convolutions of results distributions in bivariate model of measurement. In general, the correlations of output quantities appeared and its has impact on the shape and location of coverage region. In the case of Gaussian distributions where analytical formulas have described the border of cover regions, the explicit formulas of half axes of elliptical cover region have been given. For bivariate models, in which the both one dimensional distributions are assumed as the convolution of typical distribution like: Gaussian and rectangular, the 95% coverage regions have been determined by using Monte Carlo method in Matlab environment. The coverage regions are illustrated on the perspective views of graphic Matlab .fig files. The convolutions of uniform distributions and Gaussian and rectangular distribution have no analytical border solutions, and to compare, the marked cover region for only Gaussian convolutions have been added. Finally, the assessment of gathered simulation has been carried out.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.