The paper present a novel approach for generating multipurpose models of machining operations combining machine learning and search techniques. These models are intended to be applicable at different engineering and management assignments. Simulated annealing search is used for finding the unknown parameters of the models in given situations. It is expected that the developed block-oriented framework will be a valuable tool for modeling monitoring and optimization of manufacturing processes and process chains. The applicability of the proposed solution is illustrated by the results of experimental runs.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.