In this research we have studied the lighting enhancement method by analyzing chromatic performance and luminous flux of light emitting diodes that produce white light. In order to achieve expected results, it is necessary to mix Eu2+-activated strontium-barium silicate (SrBaSiO4:Eu2+) with its phosphor compounding, which has been demonstrated to have considerable influence on lighting performance. The results showed that with the gradually increasing concentration of yellow-green-emitting SrBaSiO4:Eu2+phosphor in LEDs devices, at 8500 K, the color homogeneity and the lighting output received a great improvement. The color quality scale, on the other hand, responded negatively to the increase in SrBaSiO4:Eu2+. The impact of SrBaSiO4:Eu2+on optical properties of WLEDs was confirmed. The final step to optimize SrBaSiO4:Eu2+ usage in lighting development is to figure out a suitable amount of particles and optimize their size.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Angular color distribution uniformity has been one of the most relevant properties in the development of white light-emitting diodes (WLEDs), since color consistency and uniformity are crucial factors in quality evaluation of a WLED. Here, particularly considering the need to overcome the poor chromaticity usually associated with WLED, we introduce a new design for the remote-phosphor package, namely a three-layered or triple-layer (TL) phosphor structure. Using three phosphor layers in packaging a WLED can result in higher color quality and luminous efficacy, compared to the double-layer (DL) configuration. In the present study, the results of using three remote phosphor layers indicate that although the structure using three layers has a lower color rendering index, the color quality scale is better than that available from the package with two layers. Additionally, the color-deviation values in the TL structure are smaller than in the dual-layer one, especially at high color temperatures (7,700 K and 8,500 K). Besides, in comparison with the DL model, the TL package increases the luminous flux by 1.4%–2%. Therefore, the TL remote phosphor structure possesses the greatest potential in enhancing the WLED quality.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The remote phosphor as a lighting structure has outstanding luminous efficiency compared to other options, such as conformal or in-cup. However, the lack of uniformity in distributed color has prevented remote phosphor from wider development. The answer to the chromatic performance enhancement that has been suggested by numerous researchers is the multi-layer configuration with two or three different types of chromatic phosphor. The research purpose is to select the best configuration for multi-chip white LEDs (WLEDs) to achieve optimal results in color quality scale (CQS), color rendering index (CRI), light output and color homogeneity. WLEDs mentioned in this paper have two distinct color temperatures, 6600 K and 7700 K. Experimental results show that the remote phosphor structure with three phosphor layers is superior in terms of color rendering, chromatic performance, and emitted light. The deviation of correlated color measured in this structure is also low, which means that the color uniformity is greatly enhanced in this multi-layer lighting structure. This result can be demonstrated by analyzing the scattering characteristics of the phosphoric layers using the Mie theory. The research findings have proven the effectiveness of the multi-phosphor configuration and can serve as a guideline to fabricate WLEDs with better performance.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.