This study focuses on modeling three phenomena that greatly affect the performance of lost circulation materials (LCMs) in sealing thief zones: the process of construction of the LCM seal, the final flow rate after its creation, and the fractability of this seal to the pressures inside the wellbore. To model them, concepts related to fluid mechanics, and geomechanics become of the utmost importance. To help the validation of the models presented in this work, an experimental facility to simulate lost circulation was constructed. The facility makes use of a real limestone core drilled with the Tulsa Drilling Research Projects (TUDRP) drilling rig. This experimental setup represents progress in the reproduction of overall field conditions in comparison with other setups found in the literature. Several tests were performed with walnut at different sizes and concentrations, as well as with distinct fracture openings, inclinations, and orientations. As a result, a D90 as large as the size of the fracture aperture ends up to being effective in the plugging process. In addition, a D50 the size of 1/3 of the fracture opening also provides of a good seal. Depending on the concentration, smaller sizes can be applied - the smaller the size is, the larger the concentration must be. Finally, a computer program has been developed. Estimations of particle size distribution (PSD), plug time, and flow rate after seal formation are outcomes. This method of LCM selection can be used to assess the performance of different LCMs in the field. Hence, cost, time, and energy can be saved in dealing with lost circulation.
The instability of coal beds, both in the overburden and in the production zone during drilling, in particular with directional borehole, is well known. One of the main coal attributes is presence of cracks and micro-fractures in it. This linked network of cracks is considered as the main source of many problems related to coal instability. Stresses occurring in such formations exceed the coal compressive strength. During drilling, coal becomes unstable, which can result in borehole wall collapsing, stuck pipe, or even complete loss of the borehole. Using improper drilling muds can cause additional problems. In coal, a poorly selected drilling mud can damage the natural permeability of the near-well zone. Drilling muds penetrating the pores and cracks in the coal can lead to permanent destruction of the near-well zone, partially or completely limiting the supply of methane to the borehole. Muds used for drilling in coal deposits should therefore both stabilize the borehole wall and affect minor damage to the drilled formation. The experience acquired while drilling low-permeability shale rocks generally does not correlate with the practices and guidelines used to drill holes in coal deposits due to the unique physical and mechanical characteristics of coal. One of the ways to improve the stability of coal deposits when using water-based drilling muds is to prevent the penetration of mud filtrate into the rock matrix, which can be achieved by chemical modification of the drilling mud composition or physical sealing of pores and fractures with special materials. The article presents research on the development of a new drilling mud system dedicated to coalbed methane (CBM) drilling.
PL
Niestabilność pokładów węgla zarówno w nadkładzie, jak i w strefie produktywnej podczas ich rozwiercania, w szczególności otworami kierunkowymi, jest powszechnie znana. Jedną z głównych cech węgla jest występowanie w nim systemu spękań i mikroszczelin. To właśnie tę połączoną sieć spękań uważa się za źródło wielu problemów związanych z niestabilnością węgla. Występujące naprężenia w takich formacjach przewyższają wytrzymałość węgla kamiennego na ściskanie. Podczas realizacji prac wiertniczych węgiel kamienny staje się niestabilny, może dochodzić do obsypywania ścian otworu, przychwycenia przewodu, a niekiedy do całkowitej utraty otworu. Zastosowanie do wiercenia niewłaściwych płuczek wiertniczych może powodować dodatkowe problemy. W skale, jaką jest węgiel kamienny, źle dobrana płuczka wiertnicza może uszkodzić naturalną przepuszczalność strefy przyotworowej. Płuczka, wnikając w pory oraz spękania węgla, może doprowadzić do trwałego zniszczenia strefy przyotworowej, ograniczając częściowo lub całkowicie dopływ metanu do otworu. Płuczka wiertnicza stosowana do przewiercania pokładów węgla powinna zatem zarówno stabilizować otwór podczas fazy wiercenia, jak też wpływać na niewielkie uszkodzenie przewiercanej formacji. Doświadczenia nabyte podczas przewiercania skał łupkowych o niskiej przepuszczalności na ogół nie korelują z praktykami i wytycznymi w zakresie wiercenia otworów w pokładach węgla z uwagi na wyjątkową charakterystykę fizyczno-mechaniczną węgli. Jednym ze sposobów poprawy stabilności utworów węgla przy wykorzystywaniu wodnodyspersyjnych płuczek wiertniczych jest przeciwdziałanie wnikaniu filtratu płuczkowego do matrycy skały, co można osiągnąć poprzez chemiczną modyfikację składu płuczki wiertniczej lub fizyczne uszczelnianie porów i szczelin specjalnymi materiałami. W artykule przedstawiono badania nad opracowaniem nowego systemu płuczki wiertniczej przeznaczonej do rozwiercania złóż metanu zlokalizowanego w pokładach węgla kamiennego.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Different methodologies are presented to resolve severe lost circulation problems in different field of Algeria, involving naturally fractured or cavernous formation. Lost circulation events in these formations are compared to lost circulation events that are caused by induced fracturing or by drilling through permeable zones having intergranular porosity with excessive mud density. Much progress has been made in the control of lost circulation of drilling fluids as a result of improvements in drilling fluids and drilling techniques, and the developments of new lost circulation materials and remedial procedures.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.