In this paper we have considered an SIR model with logistically grown susceptible in which the rate of incidence is directly affected by the inhibitory factors of both susceptible and infected populations and the protection measure for the infected class. Permanence of the solutions, global stability and bifurcation analysis in the neighborhood of equilibrium points has been investigated here. The Center manifold theory is used to find the direction of bifurcations. Finally numerical simulation is carried out to justify the theoretical findings.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.