In 1941, I. Gelfand proved that if a is a doubly power-bounded element of a Banach algebra A such that Sp(a) = {1}, then a = 1. In [4], this result has been extended locally to a larger class of operators. In this note, we first give some quantitative local extensions of Gelfand-Hille's results. Secondly, using the Bernstein inequality for multivariable functions, we give short and elementary proofs of two extensions of Gelfand's theorem for m commuting bounded operators, $T_1,..., T_m$, on a Banach space X.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Using [1], which is a local generalization of Gelfand's result for powerbounded operators, we first give a quantitative local extension of Lumer-Philips' result that states conditions under which a quasi-nilpotent dissipative operator vanishes. Secondly, we also improve Lumer-Phillips' theorem on strongly continuous semigroups of contraction operators.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let A(D) denote the disk algebra. Every endomorphism of A(D) is induced by some φ (…) A(D) with ║φ║ ≤ 1. In this paper, it is shown that if φ is not an automorphism of D and φ has a fixed point in the open unit disk then the endomorphism induced by φ is decomposable if and only if the fixed set of φ is singleton. Further, we determine the local spectra of the endomorphism induced by φ in the cases when the fixed set of φ either includes unit circle or is a singleton.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.