The paper deals with the issue of reducing the dimension and size of a data set (random sample) for exploratory data analysis procedures. The concept of the algorithm investigated here is based on linear transformation to a space of a smaller dimension, while retaining as much as possible the same distances between particular elements. Elements of the transformation matrix are computed using the metaheuristics of parallel fast simulated annealing. Moreover, elimination of or a decrease in importance is performed on those data set elements which have undergone a significant change in location in relation to the others. The presented method can have universal application in a wide range of data exploration problems, offering flexible customization, possibility of use in a dynamic data environment, and comparable or better performance with regards to the principal component analysis. Its positive features were verified in detail for the domain's fundamental tasks of clustering, classification and detection of atypical elements (outliers).
Przeanalizowano funkcję koherencji określoną wzajemnymi gęstościami widmowymi łącznie stacjonarnych procesów losowych, które określają właściwości stochastyczne okresowo niestacjonarnych sygnałów losowych (ONSL). Wykazano, że taka funkcja koherencji nie zmienia się przy liniowych przekształceniach sygnałów. Własności wprowadzonej funkcji koherencji skonkretyzowano dla amplitudowo i fazowo zmodulowanych sygnałów. Rozpatrzono metodę wydzielania stacjonarnych komponentów sygnałów oraz przedstawiono przykład takiego wydzielania.
EN
The coherence function defined by cross-spectral densities of jointly stationary random processes, which determine the stochastic properties of periodically nonstationary random signals, is analyzed. It is shown that linear signal transformation does not change such coherence function. The properties of introduced coherence function are specified for amplitude and phase-modulated signals. The method of extraction of signal stationary components is considered and the example of such extraction is presented.
The paper deals with the issue of reducing the dimension and size of a data set (random sample) for exploratory data analysis procedures. The concept of the algorithm investigated here is based on linear transformation to a space of a smaller dimension, while retaining as much as possible the same distances between particular elements. Elements of the transformation matrix are computed using the metaheuristics of parallel fast simulated annealing. Moreover, elimination of or a decrease in importance is performed on those data set elements which have undergone a significant change in location in relation to the others. The presented method can have universal application in a wide range of data exploration problems, offering flexible customization, possibility of use in a dynamic data environment, and comparable or better performance with regards to the principal component analysis. Its positive features were verified in detail for the domain’s fundamental tasks of clustering, classification and detection of atypical elements (outliers).
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.