Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  linear SVM network
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The holy grail of tracking people indoors is being able to locate them when they are not carrying any wireless tracking devices. The aim is to be able to track people just through their physical body interfering with a standard wireless network that would be in most peoples home. The human body contains about 70% water which attenuates the wireless signal reacting as an absorber. The changes in the signal along with prior fingerprinting of a physical location allow identification of a person’s location. This paper is focused on taking the principle of Device-free Passive Localisation (DfPL) and applying it to be able to actually distinguish if there is more than one person in the environment. In order to solve this problem, we tested a Support Vector Machine (SVM) classifier with kernel functions such as Linear, Quadratic, Polynomial, Gaussian Radial Basis Function (RBF) and Multilayer Perceptron (MLP), and a Probabilistic Neural Network (PNN) in order to detect movement based on changes in the wireless signal strength.
EN
The article presents basic rules for constructing and training neural networks, called the Support Vector Machine technique. SVM networks can mainly be used for solving tasks of classification of linearly and nonlinearly separable data and regression as well as identifying signals and recognising increases. In this paper SVM networks have been used for classifying linearly separable data in order to formulate a model of displacements of points representing a monitored object. The problem of learning networks requires the use of quadratic programming in search of an optimum point of a Lagrange function with respect to optimised parameters. Estimated parameters determine the location of the hyperplane which maximises the separation margin of both classes.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.