This article presents an analysis of the possibilities of using image processing methods for feature extraction that allows kNN classification based on a ship’s image delivered from an on-water video surveillance system. The subject of the analysis is the Hough transform which enables the detection of straight lines in an image. The recognized straight lines and the information about them serve as features in the classification process. Above all, this approach allows ships to be recognized, which can then be characterized by a specific representation and shape. Recreational units that are often seen on inland waters were classified correctly using this method. Each analyzed camera image was previously prepared – brought to the form where the ship was visible from the side and the background removed (they were monochromatic – white). The results obtained in this work will allow for the development of the final ship classification method based on camera images. This method is a significant part of the emerging system prototype, which is implemented as part of the Automatic Ship Recognition and Identification (SHREC) project.
Artykuł prezentuje eksperymentalną analizę wpływu szumu o założonym poziomie na skuteczność wykrywania prostych w obrazie przy użyciu algorytmu Hougha. Analizę przeprowadzono przy użyciu opracowanej aplikacji obejmującej realizację procedury generacji szumu oraz algorytmu automatycznie wyznaczającego liczbę pikseli w funkcji jasności w przestrzeni Hougha. Zbadano wpływ poziomu szumu na różnicę w liczbach pikseli tworzących prostą wejściową, a prostą tworzoną przez współliniowe piksele szumu.
EN
The paper experimentally analyzed the impact of noise level on the efficiency of straight lines detection using the Hough algorithm. The analysis was carried out in the own application containing the noise generation procedure and the algorithm that automatically determines the number of pixels as a function of brightness in Hough space. The impact of noise level on the difference in the number of pixels of input straight lines, and lines generated from noise was analyzed.
A high-resolution spectroscopic system for the measurements of the CIII triplet at 465 nm was installed at the COMPASS tokamak. The Doppler broadening and shift of the measured spectral lines are used to calculate the edge ion temperature and poloidal plasma rotation. At first, the spectroscopic system based on two-grating spectrometer and the calibration procedure is described. The signal processing including detection and removal of spiky features in the signal caused by hard X-rays based on the difference in the behaviour of Savitzky-Golay and median filters is explained. The detection and position estimation of individual spectral lines based on the continuous wavelet transform is shown. The method of fitting of Gaussians using the orthogonal distance regression and estimation of the error of estimation of the rotation velocity and ion temperature is described. At the end, conclusions about the performance of the spectroscopic system and its shortcomings based on summary of results calculated from 2033 processed spectral lines measured in 61 shots are drawn and the possible enhancements are suggested.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The paper presents hardware FPGA implementation of the Hough Transform algorithm for digital real time image processing. In the developed hardware structure, the processing efficiency was increased through the use of controlled pipelining, trigonometric arithmetic by look-up, integer operands only and dispersing the voting memory. The presented structure was used experimentally in the real time image processing system implemented as single chip in Intel Cyclone V FPGA. We obtained a constant image processing speed 275 MHz not related to the angle resolution.
PL
W artykule zaprezentowano autorski system przetwarzania obrazu wykorzystujący algorytm transformacji Hough. Algorytm został zaimplementowany w pojedynczym układzie FPGA Intel Cyclone V wraz z pełnym torem akwizycji danych z kamery oraz strumieniowania przetworzonych danych do standardu HDMI. Przedstawiona implementacja została zoptymalizowana z uwzględnieniem specyfiki FPGA, poprzez m.in. wprowadzenie potokowości na poziomie pojedynczego piksela, tablicowanie funkcji trygonometrycznych oraz rozproszenie pamięci użytej do realizacji procesu głosowania. W całym torze przetwarzania użyto operandów całkowitych. Uzyskano stałą prędkość przetwarzania 275 MHz niezależnie od rozdzielczości kąta.
Road inspection is one of key processes of a pavement management system, whose function is to examine and describe the road infrastructure condition. When thoroughly performed, it provides the information required to implement an adequate road infrastructure maintenance policy and plan ad hoc repairs or refurbishments. This article discusses a solution for automatic asphalt pavement cracking detection, based on image-processing technology. This solution makes it possible to identify different crack types, i.e., transverse, longitudinal, alligator-type and technological cracks. The detection process is based on the application of various methods, including statistical difference identification for pre-assumed image analysis directions, i.e., in and opposite to the test vehicle running direction. The purpose of the morphological and filtering operations applied was to reduce the image noise level. The solution proposed was verified using video material in the form of a sequence of images recorded using the test vehicle.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.