A new approach has been developed to study binding of a ligand to a macromolecule based on the diffusion process. In terms of the Fick's first law, the concentration of free ligand in the presence of a protein can be determined by the measurement of those ligands which are diffused out. This method is applied to the study of binding of methyl-orange to lysozyme in phosphate buffer of pH 6.2, at 30°C. The binding isotherm was determined initially, followed by application of the Hill equation to the data obtained, then binding constant and binding capacity were estimated.
In line with our studies on propafenone-type inhibitors of P-glycoprotein (P-gp), we applied several methods to approach virtual screening tools for identification of new P-gp inhibitors on one hand and the molecular basis of ligand-protein interaction on the other hand. For virtual screening, a combination of autocorrelation vectors and selforganising artificial neural networks proved extremely valuable in identifying P-gp inhibitors with structurally new scaffolds. For a closer view on the binding region for propafenone-type ligands we applied a combination of pharmacophore-driven photoaffinity labeling and protein homology modeling. On LmrA, a bacterial homologue of P-gp, we were able to identify distinct regions on transmembrane helices 3, 5 and 6 which show significant changes in the labeling pattern during different steps of the catalytic cycle.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.