Artykuł przedstawia optymalizację częściowych reguł asocjacyjnych generowanych przez algorytm zachłanny względem liczby pomyłek (błędnych zaklasyfikowań). Zaproponowana optymalizacja ma na celu: (i) uzyskanie reguł o stosunkowo dobrej jakości, które w kolejnych etapach badań zostaną wykorzystane do budowy klasyfikatorów, (ii) zmniejszenie liczby konstruowanych reguł, co ma znaczenie z punktu widzenia reprezentacji wiedzy. Praca przedstawia wyniki eksperymentalne dla zbiorów danych umieszczonych w Repozytorium Uczenia Maszynowego.
EN
In the paper, an optimization of partial association rules relative to number of misclassifications is presented. The aims of proposed optimization are: (i) construction of rules with small number of misclassifications, what is important from the point of view of construction of classifiers, (ii) decreasing the number of rules, what is important from the point of view of knowledge representation. The paper contains experimental results for data sets from UCI Machine Learning Repository.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.