Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  liczba Prandtla
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
100%
EN
An analysis has been carried out to study the steady viscoelastic hydromagnetic flow and heat transfer in a visco-elastic liquid flow over an exponentially stretching sheet with consideration of viscous dissipation. A zeroth order analytical local similar solution of the highly non-linear stream function equation and confluent hypergeometric solution of the heat transfer equation is obtained by converting the governing partial differential equation to ordinary differential equation by similarity transformations. The accuracy of the analytical solution for the stream function is verified by a numerical solution obtained by employing the Runge-Kutta fourth order method with shooting. The two following cases of surface conditions are studied, namely (1) prescribed exponential order surface temperature (PEST Case) and (2) prescribed exponential order boundary heat flux (PEHF Case). The effect of various parameters arising in the flow on momentum and heat transfer characteristics are presented graphically and the numerical results of wall temperature gradient (in PEST Case ) and wall temperature (PEHF Case ) are tabulated and compared with previous results.
2
Content available remote Unsteady Hartmann flow in a rotating channel with perfectly conducting walls
80%
EN
An unsteady Hartmann flow of a viscous incompressible electrically conducting fluid in a rotating channel with perfectly conducting walls under the action of a periodic pressure gradient is studied. An exact solution of the governing equations for the fully developed flow is obtained in a closed form. The expression for the shear stress at the upper plate is also derived. The solutions valid for vanishing and small finite magnetic Prandtl number are derived from the general solution. The asymptotic behavior of these solutions is analyzed, for large values of the frequency parameter […], to gain some physical insight into the flow pattern. It is found that a magnetic field tends to retard the fluid flow in both the primary and secondary flow directions whereas oscillations and rotation tend to accelerate it in both the directions. The magnetic field reduces primary and secondary induced magnetic fields whereas oscillations and rotation have reverse effect on it. The magnetic field reduces the primary as well as secondary shear stress at the upper plate […] whereas oscillations and rotation tend to increase it.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.