We introduce the relative cancellation property for commutative BCK-algebras and we study the problem of embedding of commutative BCK-algebras into Abelian lattice ordered groups. We show that if a BCK-algebra is not directed upwards, then we cannot use the method of Wyler and Baer. Anyway, supposing either union property or unitary extendibility, we can present the embedding of such a BCK-algebra into the positive cone of an Abelian lattice ordered group with universal property. Finally, some interesting examples are presented.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.