Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  large deviation
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this paper we present asymptotic results for exit probabilities of stochastic processes in the fashion of large deviations. The main result concerns stochastic processes which satisfy the large deviation principle with an integral type rate function. We also present results for exit probabilities of linear diffusions and particular growth processes, and we give two examples.
2
Content available remote An Erdös-Rényi law for mixing processes
100%
EN
We prove a large deviation type result for ψ-mixing processes and derive an ergodie version of the Erdøs-Rényi law. The result applies to expanding and Gibbs-Markov dynamical systems, including Gibbs measures and continued fractions.
EN
We analyze representative ill-posed scenarios of tomographic PIV (particle image velocimetry) with a focus on conditions for unique volume reconstruction. Based on sparse random seedings of a region of interest with small particles, the corresponding systems of linear projection equations are probabilistically analyzed in order to determine: (i) the ability of unique reconstruction in terms of the imaging geometry and the critical sparsity parameter, and (ii) sharpness of the transition to non-unique reconstruction with ghost particles when choosing the sparsity parameter improperly. The sparsity parameter directly relates to the seeding density used for PIV in experimental fluids dynamics that is chosen empirically to date. Our results provide a basic mathematical characterization of the PIV volume reconstruction problem that is an essential prerequisite for any algorithm used to actually compute the reconstruction. Moreover, we connect the sparse volume function reconstruction problem from few tomographic projections to major developments in compressed sensing.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.