Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  konfiguracja Havlíček-Tietze
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Havliček-Tietze configurations in various projective planes
100%
EN
A. Lewandowski and H. Makowiecka proved in 1979 that existence of the Havliček–Tietze configuration (shortly H - T) in the desarguesian projective plane is equivalent to existence in the associated field, a root of polynomial x2 + x + 1, different from 1. We show that such a configuration exists in every projective plane over Galois field GF(p2) for p ≠ 3. As it has been demonstrated, in a projective plane over arbitrary field F, each hexagon contained in H - T, satisfies the Pappus–Pascal axiom, even if F is noncommutative. Moreover, such a hexagon either is pascalian or has exactly one pair of opposite sides intersecting at a point collinear with two points not belonging to these sides. In particular, all such hexagons are pascalian iff char F = 2. For the (noncommutative) field of quaternions, we have determined the set of all roots of the mentioned polynomial. Every H - T is the special Pappus configuration, in which three main diagonals of the hexagon are concurrent.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.