W referacie przedstawiono stanowisko do próbnych obciążeń wbijanej kolumny kamiennej w warunkach polowych. Wyniki badań w postaci krzywej "obciążenie-osiadanie" uzupełnione zostały inwentaryzacją kolumny po próbnym obciążeniu.
EN
The paper presents in situ test station for driven stone column. Test results in the form of load-displacement dependence was supplemented by inventory.
Purpose: This study aims to study the load – settlement behaviour of circular footing rested on encased single stone column. Design/methodology/approach: The effect of vertical, horizontal and combined verticalhorizontal encasement of stone column on the load carrying capacity were examined numerically. The effect of stone column dimension (80 mm and 100 mm), length (400 mm and 500 mm), and spacing of reinforcement on the load carrying capacity and reinforcement ratio were assessed. Findings: The obtained results revealed that the load carrying capacity of geotextile encased stone columns are more than ordinary stone columns. For vertically encased stone columns as the diameter increases, the advantage of encasement decreases. Whereas, for horizontally encased stone column and combined vertical- horizontal encased stone column, the performance of encasement intensifies as the diameter of stone column increases. The improvement in the load carrying capacity of clay bed reinforced with combined verticalhorizontal encased stone columns are higher than vertical encased stone columns or horizontal encased stone column. The maximum performance of encasement was observed for VHESC1 of D = 80 mm. Research limitations/implications: For this study, the diameter of footing and stone column was kept same. The interface strength factor between stone column and clay bed was not considered. Practical implications: The encased stone column could be use improve the laod bearing capacity of weak soils. Originality/value: Many studies are available in literature regarding use of geosynthetic as vertical encasement and horizontal encasement of stone column. The study on combined effect of vertical and horizontal encasement of stone column on load carrying capacity of weak soil is very minimal. Keeping this in view, the present work was carried out.
The application of stone column technique for improvement of soft soils has attracted a considerable attention during the last decade. However, in a very soft soil, the stone columns undergo excessive bulging, because of very low lateral confinement pressure provided by the surrounding soil. The performance of stone column can be improved by the encapsulation of stone column by geosynthetic, which acts to provide additional confinement to columns, preventing excessive bulging and column failure. In the present study, a detailed experimental study on behavior of single column is carried out by varying parameters like diameter of the stone column, length of stone column, length of geosynthetic encapsulation and stiffness of encapsulation material. In addition, finite-element analyses have been performed to access the radial deformation of stone column. The results indicate a remarkable increase in load carrying capacity due to encapsulation. The load carrying capacity of column depends very much upon the diameter of the stone column and stiffness of encapsulation material. The results show that partial encapsulation over top half of the column and fully encapsulated floating column of half the length of clay bed thickness give lower load carrying capacity than fully encapsulated end bearing column. In addition, radial deformation of stone column decreases with increasing stiffness of encapsulation material.
The dynamic replacement columns are formed by driving a coarse-grained material into a soft soil by means of repeatable drops of a pounder. The final shapes of the columns are non-cylindrical and depend on the subsoil conditions. This paper presents results of the laboratory study on influence of the thickness of the soft soil on the displacements of the backfill aggregate during the driving process. A test box with one acrylic-glass wall was prepared, in which, over a load-bearing sand layer, a soft soil of various thicknesses (Hs = 0.3, 0.4 or 0.5 m) was modelled using a semi-transparent acrylic polymer. The displacements of the backfill gravel particles were tracked by means of a high-speed camera. The material was driven by dropping a 0.2 m high (Hp) pounder. The results revealed that the distance between the bottom of the first crater and the top of the sand layer played an important role in directing the particles. At Hs/Hp = 2.5 pear-shaped floating columns were formed as the grains in the side zones were less affected by the pounder drops and their paths deviated from the vertical axis by not more than 50°. In case of Hs/Hp = 2.0 and 1.5, the column bases reached the bearing layer and the impact energy caused much larger vertical and horizontal displacements of the backfill material in the side zones - the observed largest angles were equal to 64° and even 90°, respectively. Eventually, the final column shapes resembled a non-symmetrical barrel and a truncated cone.
PL
Wymiana dynamiczna jest jedną z metod wzmacniania słabego podłoża stosowaną na świecie od blisko 50 lat, polegającą na formowaniu w podłożu kolumn z materiału gruboziarnistego i/lub bardzo gruboziarnistego. Kolumny wykonuje się ubijakami o masach od 5 do 20 ton, zrzucanymi z wysokości 15-25 m. W pierwszej kolejności, na skutek zrzutu ubijaka, w słabym podłożu powstaje krater, do którego wsypywany jest materiał okruchowy o frakcjach od piaszczystej, przez żwirową aż do, najczęściej, kamiennej. Jest on poddawany kolejnym zrzutom ubijaka i następującym po nim zasypom. Materiał ten zostaje wtłoczony w podłoże. W trakcie tego procesu, oprócz przemieszczeń pionowych, dochodzi do przemieszczania się ziaren w poziomie. Przeprowadzone przez jednego z autorów inwentaryzacje kolumn w warunkach in situ wykazały wpływ warunków gruntowo-wodnych, w tym w szczególności miąższości słabego gruntu, na kształty końcowe kolumn. Skłoniło to autorów do podjęcia badań laboratoryjnych dotyczących procesu przemieszczania się kruszywa w trakcie jego wbijania w warstwie słabej o różnej miąższości (Hs) równej 1,5, 2,0 i 2,5 krotności wysokości stosowanego ubijaka (Hp).
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
W artykule przedstawiono wyniki badań laboratoryjnych dotyczących wpływu technologii formowania kolumn wymiany dynamicznej, tj. głębokości wykonania krateru początkowego, wysokości jego zasypu oraz energii uderzenia na kształt kolumn i ich długość. Badania przeprowadzono na stanowisku umożliwiającym obserwację procesu wbijania. Wyniki badań wskazują na możliwość wykonywania najdłuższych kolumn o optymalnym kształcie z zastosowaniem niewielkiej energii przy częściowym zasypie krateru początkowego równego wysokości ubijaka.
EN
The paper presents the results of laboratory tests on the influence of the dynamic replacement column formation technology, i.e. the depth of the initial crater, the height of its filling and the impact energy on the shape of the columns and their length. The tests were carried out at a stand enabling the observation of the driving process. The test results indicate the possibility of making the longest columns of optimal shape with the use of less energy with partial filling of the initial crater equal to the height of the pounder.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.