Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  koagulacja/flokulacja
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This investigation was undertaken to determine the optimum conditions for physical-chemical treatment of waste water contaminated with heavy metals in the industry of metallic coatings. The industry uses substances such as: inorganic acids, alkalis, acidic and alkaline metal salts, that has a high water demand in the processes of flushing and cleaning the parts to be coated. According to the preliminary characterization of samples and reported in the literature theory, physico-chemical process was implemented for the removal of contaminants that consisted in chemical oxidation of CN-ions, followed by chemical precipitation made next to a coagulation/flocculation and subsequent adsorption on activated coal. Laboratory scale tests showed the optimal conditions of treatment including chemical oxidation by the addition of 4.15 cm3 of H2O2 (30%) per gram of CN, chemical precipitation with NaOH to a pH of 12, followed by coagulation/flocculation with Fe2(SO4)3 at a speed of 135 rpm for 3 min and 20 rpm for 20 min and finally the addition of 1.0 g of adsorbent previously activated at 700°C. From this study, it is clear that the adsorption on activated carbon is highly efficient in the removal of heavy metals from industrial waste water from electroplating. However, it is also clear that the parallel application of the treatments, shown here, is more effective to completely remove contaminants such as lead, nickel, silver, and copper at laboratory scale, so it is recommended the simultaneous use of these physico-chemical processes.
PL
Badania podjęto celem ustalenia optymalnych warunków fizycznego i chemicznego oczyszczania ścieków z galwanizerni. Zakłady takie wykorzystują kwasy nieorganiczne, alkalia i sole metali o odczynie kwasowym bądź zasadowym. Ponadto zużywają one dużo wody w procesie oczyszczania i płukania pokrywanych metalami elementów. Na podstawie wstępnej charakterystyki próbek i danych literaturowych wdrożono fizyczny i chemiczny proces usuwania zanieczyszczeń, który polegał na chemicznym utlenianiu jonów CN oraz chemicznym wytrącaniu, koagulacji/flokulacji oraz adsorpcji na węglu aktywnym. Testy w skali laboratoryjnej wykazały, że optymalne warunki oczyszczania obejmowały chemiczne utlenianie dzięki dodatkowi 4,15 cm3 H2O2 (30%) na gram CN, chemiczne strącanie NaOH do pH 12, a następnie koagulację/ flokulację z prędkością 135 obr.∙min–1 przez 3 min i 20 obr.∙min–1 przez 20 min oraz dodatek 1,0 g adsorbentu aktywowanego wstępnie w 700°C. Badania wykazały, że adsorpcja na węglu aktywnym jest wysoce efektywna w usuwaniu metali ciężkich ze ścieków galwanizerskich. Równoległe stosowanie zabiegów przedstawionych w pracy zapewnia jeszcze większą efektywność w całkowitym usuwaniu ołowiu, niklu, srebra i miedzi w skali laboratoryjnej. Dlatego równoczesne stosowanie tych zabiegów jest zalecane w praktyce.
EN
This paper presents results of research on changes in morphological parameters and fractal dimensions of Monoraphidium contortum and Microcystis aeruginosa cell aggregates obtained from coagulation using FeCl3. The study used Morphologi G3 as microscopic image analyzer. Based on the microscopic image analysis, the aggregates specific morphological parameters were determined: equivalent diameter (de), „elongation”, „solidity” and aggregate fractal dimensions - D1 and D2. It was found that, size of phytoplankton cell aggregates was subordinated to log-normal distribution. The analysis of changes in aggregate size distribution indicated that along with the increase of coagulant doses (Dc) and flocculation time (tf), their mean equivalent diameter increased. The average diameter of aggregates, on the other hand, decreased with increasing velocity gradient (G). Along with the increase in the amount of energy introduced into the system during mixing (G), a tendency to elongate cell aggregates and reduce their solidity was observed. The morphological characteristics of phytoplankton aggregates based on morphological parameters and fractal geometry allowed to observe a significant relationship between D2 and „solidity”. An increase in the morphological parameter in the form of „solidity” was associated with an increase in the value of the second fractal dimension. Aggregate size evolution, at a constant velocity gradient, occurred in three stages: aggregate growth (I), aggregate break-up (II) and steady state (III). The size and spatial structure of aggregates influenced sedimentation properties of flocs. The reduction of the mean equivalent diameter and solidity of aggregates resulted in a slower sedimentation rate of aggregates.
PL
W pracy poddano analizie zmiany parametrów morfologicznych i wymiarów fraktalnych agregatów komórek zielenicy Monoraphidium contortum oraz sinicy Microcystis aeruginosa ,,uzyskanych w wyniku koagulacji prowadzonej z wykorzystaniem chlorku żelaza (III). W badaniach wykorzystano analizator obrazu Morphologi G3. Zastosowana metoda cyfrowej analizy obrazu mikroskopowego pozwoliła na scharakteryzowanie zarejestrowanych cząstek za pomocą szeregu parametrów morfologicznych: średnica równoważna (dr), „wydłużenie”, „zwartość”. Ponadto, w oparciu o analizę obrazu mikroskopowego, wyznaczono wymiary fraktalne - D1 i D2. Stwierdzono, że wielkość agregatów komórek fitoplanktonu była podporządkowana rozkładowi log-normalnemu. Przeprowadzona analiza zmian rozkładów wielkości agregatów wskazała, że wraz ze wzrostem dawek koagulantu (Dk) i czasu flokulacji (tf) następował wzrost ich średniej średnicy równoważnej. Średnia średnica agregatów uległa natomiast zmniejszeniu wraz ze wzrostem gradientu prędkości (G). Zwiększanie ilości energii wprowadzanej do układu podczas mieszania (G), prowadziło do wydłużania się agregatów komórek oraz zmniejszania ich zwartości. Charakterystyka morfologiczna agregatów fitoplanktonu, oparta na parametrach morfologicznych i geometrii fraktalnej pozwoliła zaobserwować istotną zależność pomiędzy D2, a „zwartością”. Wzrost parametru morfologicznego w postaci „zwartości” związany był ze zwiększeniem wartości drugiego wymiaru fraktalnego. Zaobserwowano, że zmiana wielkości agregatów w czasie, przy stałym gradiencie prędkości zachodziła w trzech etapach: wzrost agregatów (I), rozpad agregatów (II) i ustalenie stanu równowagi (III). Wielkość i struktura przestrzenna agregatów wpływała na właściwości sedymentacyjne kłaczków. Zmniejszenie średniej średnicy równoważnej i zwartości agregatów decydowało o mniejszej prędkości sedymentacji agregatów.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.