Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  kinesthetic differentiation
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
100%
EN
Purpose. In most circumstances it is possible to provide the precise estimation of force and weight by means of kinesthetic differentiation. In some conditions, like physical effort or fatigue, kinesthetic differentiation can become reduced. The kinesthetic differentiation capacity can be expressed as repeatability of muscular contraction force or movement. The present study investigates the direction of changes in kinesthetic differentiation of force applied by both arms during elbow flexion and extension before and after exercise. Basic procedures. The study sample consisted of 23 cyclists (mean ± SD) aged 18.1 ± 1.8 years, 17 rowers aged 18.1 ± 1.8 years, and a control group consisting of 32 subjects aged 21.3 ± 1.3 years. All subjects performed a progressive exercise test. Kinesthetic differentiation was measured as the repeatability of force applied during elbow flexion and extension. Main findings. The results obtained confirm that kinesthetic differentiation in both arms after exercise improved by means of elbow extension. Further research can contribute to the development of ways of control of adaptation changes in the central nervous system and the locomotor system on a general level, since the studies so far have described either local changes, e.g. EMG, or provided specific data related to typical patterns of activity in a given sport. Conclusions. The proposed method allows identification of effects of intense exercise on the kinesthetic differentiation capacity on a more general level.
EN
Purpose. Accurate shooting in basketball is a prerequisite for success. Coordination ability, one of the abilities that determine the repeatability of accurate shooting, is based on kinesthetic differentiation. The aim of the study was to evaluate the strength component of kinesthetic differentiation ability and determine its relationship with shooting accuracy. Methods. Peak muscle torque of the elbow extensors under static conditions was measured in 12 young basketball players. Participants then reproduced the same movement at a perceived magnitude of 25%, 50%, and 75% of static peak torque, with error scores calculated as a measure of kinesthetic differentiation. The results were compared with players’ field goal percentages calculated during game play in a regional championship. Results. No statistically significant relationships were found between the level of kinesthetic differentiation ability and field goal percentage. Additionally, no upper limb asymmetry was found in the sample. Conclusions. The relatively high levels of elbow static peak torque suggest the importance of upper limb strength in contemporary basketball. The lack of a statistically significant difference between the right and left limbs decreases the risk of suffering injury. It is likely that choosing other suitable tests would demonstrate the relationships between field goal percentage and kinesthetic differentiation ability.
EN
Introduction. The purpose of this investigation was to examine the structure of coordination motor abilities (CMA) in male basketball players at different levels of competition. Material and methods. The study included 183 male basketball players from 10 Polish sports clubs. The examined groups consisted of seniors (n=42) aged 24.5 (± 3.3), juniors (n=37) aged 16.8 (± 0.6), cadets (n=54) aged 14.5 (± 0.1) and children (n=50) aged 13.4 (± 0.2). A battery of motor tests was administered to assess the following CMA: kinesthetic differentiation of movements, spatio-temporal orientation, reaction time, movement coupling, sense of balance, sense of rhythm and adjustment of movements. The structure of CMA under investigation was determined based on the results of Hotelling's principal component analysis in Tucker's modification, completed with Kaiser's Varimax rotation [1, 2]. Results. The CMA structure of basketball players was composed of three or four factors. Most often these included rhythm, movement differentiation, movement coupling and adjustment of movements. Less frequently the structure consisted of spatio-temporal orientation, balance and reaction time. An in-depth analysis of the CMA structure revealed that factors ranged from heterogeneous (children and cadets) to homogeneous ones (juniors and seniors). The distribution of identified factors in the common variance was the smallest in children and cadets (58.9% and 62.9%, respectively) and the biggest in juniors and seniors (69.3% and 68.48%, respectively).
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.