In the first part of the paper [1] theoretical background of parallel solving of parabolic Hankel's problem was presented. Here we present appropriate algorithms implemented in C++ programming language and used for computing important parameters of a DC cable. Those are: steady state current rating, heat-up curves and time constant. The results were compared to those obtained from an application of a commercial sequential software for the same task. The comparison showed good agreement of the results. The time decomposition approach resulted in good speed-up and efficiency of the parallel computations.
PL
W pierwszej części artykułu [1] przedstawiono teoretyczne podstawy równoległego rozwiązywania parabolicznego zagadnienia Hankela. Bieżąca praca prezentuje implementację w języku C++ oraz zastosowanie opisanych w [1] algorytmów do wyznaczania istotnych parametrów kabla prądu stałego. Wyznaczono dopuszczalny prąd długotrwały, krzywe rozgrzewu oraz uśrednioną stałą czasową. Otrzymane wyniki porównano z uzyskanymi za pomocą komercyjnego oprogramowania NISA/Heat Transfer, użytego do rozwiązania tego samego zagadnienia. Porównanie wykazało dobrą zgodność rezultatów. Zastosowanie dekompozycji czasu skutkuje uzyskaniem dobrego przyśpieszenia i wydajności obliczeń równoległych.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The thermal field of a DC cable under a short-circuit regime has been investigated. A convectional model of cooling of the system was assumed (i.e. Hankel's condition). The respective boundary-initial problem has been decomposed. Field components were determined by means of own analytical-numerical method. The given final temperature and obtained distributions enabled the computation of admissible one-second density of the short-circuit current. From the out analysis it follows that cooling conditions have small influence on the one-second current density. The same refers to the thermal field distribution in a core. It follows from the short duration of a short-circuit and a significant thermal inertia of the cable with a relatively large cross-section of a core. However introduction of Hankel's condition in place of Dirichlet's one changes in a significant way the picture of a field within a thin insulation. It raises the time constant of thermal processes in the cable.
PL
W pracy badano pole termiczne kabla prądu stałego w stanie zwarcia. Założono konwekcyjny model chłodzenia układu (tzn. warunek Hankela). Zdekomponowano odpowiednie zagadnienie brzegowo-początkowe. Składowe pola wyznaczono za pomocą własnej metody analityczno-numerycznej. Dana temperatura końcowa i otrzymane rozkłady umożliwiły obliczenie dopuszczalnej jednosekundowej gęstości prądu zwarcia. Z przeprowadzonej analizy wynika, że warunki chłodzenia mają wpływ na jednosekundowa gęstość. To samo odnosi się do pola termicznego w żyle. Wynika to z małego czasu trwania zwarcia i ze znacznej cieplnej inercji kabla o stosunkowo dużym przekroju żyły. Wprowadzenie warunku Hankela w miejsce Dirichleta zmienia jednak istotnie obraz pola w cienkiej izolacji. Zwiększa również stałą czasową cieplnych procesów w kablu.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
A model of non-stationary heat transfer in a DC cable and its discretization are presented. The cable is placed in the air, so the Hankel boundary condition was applied. It models natural convection and radiation. The total heat transfer coefficient was made dependent on the angular coordinate, because the local heat flux from a cylindrical geometry depends on the position of an analysed point on the cable's perimeter. The initial-boundary heat transfer problem was discretized by the implicit finite difference method in cylindrical coordinates. In order to solve it in parallel the duration of the transient state analysis was partitioned. Such decomposition method can introduce slight inconsistencies in obtained results, so an algorithm improving the results was also proposed.
PL
W artykule zaprezentowano model niestacjonarnego przepływu ciepła w kablu prądu stałego oraz jego dyskretyzację. Dla kabla umieszczonego w powietrzu przyjęto warunek brzegowy Hankela, modelujący naturalną konwekcję i promieniowanie. Całkowity współczynnik przejmowania ciepła uzależniono od współrzędnej kątowej, ponieważ lokalny strumień ciepła oddawanego przez poziomo ułożony kabel zależy od położenia punktu na jego obwodzie. Brzegowo-początkowe zagadnienie przepływu ciepła zostało zdyskretyzowane za pomocą niejawnej metody różnic skończonych w cylindrycznym układzie współrzędnych. W celu umożliwienia rozwiązania zagadnienia w równoległym systemie obliczeniowym, dokonano podziału czasu analizy stanu nieustalonego. Zastosowana metoda dekompozycji może naruszyć gładkość otrzymanych krzywych rozgrzewu, toteż zaproponowano algorytm eliminacji tych zaburzeń.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.