The taxonomy of palaeospinacid sharks (Chondrichthyes, Neoselachii) is reviewed. New skeletal material from the famous Late Jurassic lithographic limestones of southern Germany (Solnhofen area and Nusplingen) enables identification of the morphological and dental differences between Synechodus and Paraorthacodus. These taxa were hitherto known mainly by isolated teeth or a few mostly fragmentary skeletal remains from the Early and Late Jurassic and Late Cretaceous. Differences not only include dental features but also the presence of a single dorsal fin in Paraorthacodus compared to two in Synechodus. Fin spines are restricted to Early Jurassic specimens. A detailed examination of the small neoselachian shark, Macrourogaleus hassei, from the lithographic limestones of the Solnhofen area revealed that this taxon displays the characteristic synechodontiform tooth root morphology (pseudopolyaulacorhize) and a single dorsal fin as seen in Paraorthacodus. Consequently, Macrourogaleus is assigned to the Palaeospinacidae. It differs from Paraorthacodus, however, in the presence of a single row of enlarged placoid scales on the caudal crest.
A small sauropod dinosaur collected from the Rocky Mountains of central Colorado (north of the Elk Range, Pitkin County) is assigned to the rare genus Haplocanthosaurus. The specimen, MWC 8028, consists of four dorsal centra, five partial ribs, the sacrum, five caudal vertebrae, three chevrons, five partial neural spines and many fragments and is from the lower third of the Upper Jurassic Morrison Formation. The dorsal vertebrae are procamerate, and on the sacral vertebrae the neural arch peduncles are vertically elongate and the neural spines are strongly reclined. The only sauropod from the Morrison Formation that shares these characters is Haplocanthosaurus and based on those characters MWC 8028 is referred to Haplocanthosaurus. This is at most the tenth specimen and the seventh locality for this sauropod, all within the Morrison Formation.
The Owadów-Brzezinki quarry is one of the most important paleontological sites in Poland, known from its exceptionally well-preserved Late Jurassic (Tithonian) fossils of marine and terrestrial biota, including horseshoe crabs and decapod crustaceans, rare ammonites, various insects and pterosaurs. This paper describes the discovery of new, well preserved reptile bones (ichthyosaurs, turtles and crocodylomorphs), which adds sigmficantly to our knowledge of these three gr°upü. The occurrence of large marine reptiles show open marine connections with the Sub- boreal-Boreal areas (both with Subboreal English seas and Boreal Arctic areas), and the Submediterranean Province (corresponding to the area of southern Germany).
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The early history of heterodontid sharks is documented mainly by isolated teeth. So far, three different heterodontid genera have been recorded from the Jurassic: Proheterodontus from the Middle Jurassic of England (and probably Upper Jurassic of France), Paracestracion from the Early to Late Jurassic of England, Belgium and S. Germany, and Heterodontus from the Upper Jurassic of South Germany. Paracestracion is known by isolated teeth in the Early and Middle Jurassic and by articulated skeletons in the Late Jurassic. Recently discovered skeletal remains from the upper Kimmeridgian locality of Schamhaupten, S. Germany, represent a new, hitherto unknown extinct species of Paracestracion, P. viohli sp. nov., which documents further taxonomic diversity of early heterodontids. This new taxon is represented by a subadult individual as indicated by the absence of molariform lateral teeth; it shares with other species of Paracestracion the characteristic holaulacorize cuspidate teeth. It differs from all other species in having ornamented lingual crown faces. Teeth of Proheterodontus differ in a different tooth root vascularisation. Proheterodontus and Paracestracion vanished before or at the Jurassic/Cretaceous boundary with Heterodontus becoming progressively more diverse in the Cretaceous and Cenozoic.
Detailed micropaleontological investigation of more than 400 samples (150 identified species) from the Mesozoic sediments of southern Poland and southwestern Ukraine was the basis for their correlation. The youngest Mesozoic assemblage identified in the studied material represent the early Late Cretaceous (Turonian). This assemblage occurs in the so-called the III Formation of Turonian epicontinental strata in Poland, and in the Dubivtsi Formation in West Ukraine. Microfossil assemblages of the Early Cretaceous age (Berriasian–Barremian) allow for a correlation of the Ropczyce and Dębica formations (central part of S Poland) and the upper part of the Babczyn and Cieszanów formations (SE Poland) with the Stavchany Formation and a part of the Bukovyna Formation in SW Ukraine. Tithonian microfossil assemblages from Poland resemble those of the shallow-water Nyzhniv Formation from the Ukrainian part of the East European Platform. Open-marine microfossils (e.g. calpionellids) commonly occur only in the Ukrainian material. Poor microfossil assemblages of the Kimmeridgian age occur in majority of studied subdivisions. They were identified in the Sobków Formation and the upper part of the Niwki Formation in the central part of S Poland, Ruda Lubycka, the upper part of the Bełżyce, Basznia, and Głowaczów formations (SE Poland) and in the Moryantsi and Pidluby formations (Bilche-Volitsia zone of the Carpathian Foredeep) and in the Rava Rus’ska Formation (Eastern European Platform). Among the Oxfordian microfossil assemblages, only those containing Alveosepta jaccardi (Schrodt) and Protomarssonella jurassica (Mityanina) allow for a correlation of subdivisions from both areas. These assemblages occur in the “Coral-algal” Formation in the Tarnów–Dębica region and in the Bełżyce, Jasieniec and Jarczów formations in SE Poland. The coeval sediments belong to the Boniv, Rudky and Sokal formations in West Ukraine. Scarce data from the Middle Jurassic sediments do not allow for a correlation of the material studied.
PL
Szczegółowa analiza mikropaleontologiczna ponad 400 próbek (150 oznaczonych gatunków) z utworów mezozoicznych południowej Polski i zachodniej Ukrainy umożliwiła korelację tych utworów. Najmłodsze stwierdzone, w badanym materiale, zespoły reprezentują niższą późną kredę (turon). Zespół ten występuje w tzw. III formacji utworów epikontynentalnych w Polsce oraz w formacji dubowieckiej SW Ukrainy. Zespoły mikroskamieniałości wieku wczesnej kredy (berias–barrem) pozwalają na korelację formacji z Ropczyc i Dębicy (centralna część Polski południowej) oraz górnej części formacji z Babczyna i formacji cieszanowskiej (SE Polska) z formacją stawczańską i częścią formacji bukowińskiej SW Ukrainy. Stwierdzone w materiale z Polski zespoły mikroskamieniałości tytonu przypominają zespoły z płytkowodnych utworów formacji niżniowskiej ukraińskiej części platformy wschodnioeuropejskiej. Natomiast większość zespołów mikroskamieniałości tytonu z badanych utworów SW Ukrainy charakteryzuje obecność form otwartego morza (kalpionellidów). Zespoły mikroskamieniałości kimerydu, choć ubogie,występują w większości badanych utworów. Stwierdzono je w formacji z Sobkowa i w górnej części formacji z Niwek (centralna część Polski południowej) w formacji z Rudy Lubyckiej oraz w górnych częściach formacji bełżyckiej, z Baszni, głowaczowskiej (SE Polska), a także na Ukrainie w formacjach moranieckiej i podlubieckiej (strefa Bilcze-Wolica zapadliska przedkarpackiego) i w formacji z Rawy Ruskiej (platforma wschodnioeuropejska). Z zespołów oksfordu jedynie te, które zawierały otwornice Alveosepta jaccardi (Schrodt) i Protomarssonella jurassica (Mityanina), pozwalają na korelację badanych wydzieleń litostratygraficznych. Zespoły takie występują w formacji „koralowcowo-glonowej” rejonu Tarnów–Dębica (centralna część Polski południowej) oraz w formacjach bełżyckiej, jasienieckiej i jarczowskiej (SE Polska). Na obszarze SW Ukrainy do równowiekowych utworów należą formacje: boniwska, rudkowska i sokalska. Niedostateczna ilość danych mikropaleontologicznych z utworów jury środkowej nie pozwoliła na wykonanie korelacji.
The Upper Jurassic carbonates exposed in the southern part of the Kraków-Częstochowa Upland are well known for their significant facies diversity related to the presence of microbial and microbial-sponge carbonate buildups and bedded detrital limestone in between. Both the buildups and detrital limestones revealed differential susceptibility to compaction which, apart from differential subsidence of the Palaeozoic basement and synsedimentary faulting, was one of the factors controlling seafloor palaeorelief in the Late Jurassic sedimentary basin. The compaction of the detrital limestones has been estimated with an experimental oedometric method in which specially prepared mixtures made of ground limestones from a quarry in the village of Żary were subjected to oedometer tests. The diameters of the detrital grains and their percentages in the limestones were determined by microscopic examinations of thin sections. The diameters were assigned to predetermined classes corresponding to the Udden-Wentworth scale. The rock samples were then ground down to the grain sizes observed in thin sections. From such materials, mixtures were prepared of grain size distributions corresponding to those observed in thin sections. After adding water the mixtures were subjected to oedometer tests. Analysis of the compression of such mixtures under specific loads enabled preparation of a mathematical formula suitable for the estimation of mechanical compaction of the limestone. The obtained values varied from 27.52 to 55.53% for a load corresponding to 300 metres burial depth. The most significant effect of mechanical compaction was observed for loads representing only 2 metres burial depth. Further loading resulted in a much smaller reduction in sample height. The results of the oedometer tests cannot be used directly to determine compaction of the detrital limestones. Mainly because microscopic observations of thin sections of the experimental material show that chemical compaction was also an important factor influencing thickness reduction of the limestones.
Olistoliths of various ages, provenance and dimensions are known in all of the higher-rank tectonic units of the Outer Carpathians. Their occurrences at various stratigraphic levels (Late Jurassic - Early Miocene) are related to different stages of development of the flysch basins, from the stage of rifting to post-rifting, through the orogenic phases, and further to the post-orogenic period.
We briefly report on recent discovery of a new Fossil-Lagerstätte at Owadów-Brzezinki quarry (central Poland), where Upper Jurassic (Upper Tithonian = Middle Volgian) shallow water carbonates are exposed. Th section includes a richly fossiliferous horizon of lithographic-type limestones, formed in a lagoonal depositional environment. Numerous organic and phosphatic remains of wide range of both marine and terrestrial creatures, including horseshoe crabs and decapods, disarticulated fish skeletons, remains of marine reptiles, ammonites, dragonflies, beetles, and rare isolated pterosaur bones and teeth, were found in association with an extremely abundant small bivalves Corbulomima obscura. The richly fossiliferous horizon at Owadów-Brzezinki is stratigraphically closely related to one of the world's most famous Fossil-Lagerstätte sites – Solnhofen (Bavaria, south-central Germany).
10
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
W warstwach cieszyńskich odnotowano liczne otwornice bentoniczne wieku tyton-hoteryw. Generalnie ich liczebność i zróżnicowanie taksonomiczne zmniejszały się podczas depozycji tych osadów. Zubożenie zespołów otwornicowych było związane z transformacją geotektoniczną basenu karpackiego (cieszyńskiego) i ewolucją ówczesnych środowisk na przełomie jury i kredy. Analizy morfogrupowa i tafofacjalna wykazały, iż basen ewoluował od marginalnego i szelfowego zbiornika do otwartego basenu morskiego. Proces ten udokumentowała sukcesja ośmiu zespołów otwornicowych. Początkowo dominowały w nich wapienne otwornice bentoniczne znane z szelfowych i pararafowych środowisk basenów epikontynentalnych i morskich. Na przełomie jury i kredy zostały one wyparte przez głębokomorskie otwornice krzemionkowe. Pierwsza grupa wapiennych otwornic miała charakter allochtoniczny i była związana z końcową fazą regresji morza. Odmienna autochtoniczna mikrofauna pojawiła się z początkiem cyklu regresywno-transgresywnego. W tym czasie, przy nadal utrzymującym się niskim poziomie morza, doszło do wyraźnego pogłębienia zbiornika cieszyńskiego. Następstwo omawianych zespołów otwornic określa przynależność paleobiogeograficzną badanego fragmentu zbiornika karpackiego, który stał się integralną częścią oceanu tetydzkiego już we wczesnej kredzie.
EN
Numerous benthic foraminifers are noted in the Cieszyn Beds. Generally their number and taxonomic variability decreased during the sedimentation of these deposits. The impoverishment of foraminiferal assemblages, which corresponded with geotectonic transformation of the Carpathian (Cieszyn) Basin and evolution of the contemporary environments was noted at the turn of Jurassic-Cretaceous. Morphogroup and taphofacial analyses suggest that this basin evolved from narrow, shelf basin into open marine basin. Succession of foraminiferal assemblages has evidenced this process. At the beginning these assemblages contained calcareous benthic forms, which were known from shelf and para-reef environments of epicontinental and marine basins. At the Jurassic-Cretaceous boundary these ones were replaced by deep-water siliceous foraminifers. The first group of the mentioned foraminifers comprised mainly allochthonous forms, which occurred at the end of the regression of the sea. Autochthonous microfauna, al-though differing, appeared at the beginning of transgression cycle. At this time the basin was deepening while a level of the sea was as low as before. The sequence of the studied foraminiferal assemblages is related to paleobiogeographical position of the Cieszyn Basin, which finally became an integral part of the Tethyan bioprovince at the Early Cretaceous.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.