Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  isotropy mini-group
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this two parts article with the same title we continue the Coxeter spectral study of the category UBigrm of loop-free edge-bipartite (signed) graphs Δ, with m ≥ 2 vertices, we started in [SIAM J. Discr. Math. 27(2013), 827-854] for corank r = 0 and r = 1. Here we study the class of all non-negative edge-bipartite graphs Δ ∈ UBigrn+r of corank r ≥ 0, up to a pair of the Gram Z-congruences ;~z and ≈z, by means of the non-symmetric Gram matrix ĞΔ∈Mn+r(Z) of Δ, the symmetric Gram matrix GΔ:=1/2[ĞΔ+ĞΔ-tr]∈Mn+r(Z), the Coxeter matrix CoxΔ:[formula...], its spectrum speccΔ⊂C, called the Coxeter spectrum of Δ, and the Dynkin type DynΔ∈{An,Dn,E6,E7,E8} associated in Part 1 of this paper. One of the aims in the study of the category UBigrn+r is to classify the equivalence classes of the non-negative edge-bipartite graphs in UBigrn+r with respect to each of the Gram congruences ~Z and ≈Z. In particular, the Coxeter spectral analysis question, when the congruence Δ≈ZΔ′ holds (hence also Δ~ZΔ′ holds), for a pair of connected non-negative graphs Δ,Δ′∈uBigrn+rsuch that speccΔ=speccΔ′ and DynΔ=DynΔ′, is studied in the paper. One of our main aims in this Part 2 of the paper is to get an algorithmic description of a matrix B defining the strong Gram Z-congruence Δ≈ZΔ′, that is, a Z-invertible matrix B∈Mn+r(Z) such that [formula...]. We obtain such a description for a class of non-negative connected edge-bipartite graphs Δ∈uBigrn+r of corank r = 0 and r = 1. In particular, we construct symbolic algorithms for the calculation of the isotropy mini-group ..., for a class of edge-bipartite graphs Δ∈uBigrn+r. Using the algorithms, we calculate the isotropy mini-groupGl(n,Z)D where D is any of the Dynkin bigraphs An, Bn, Cn, Dn, E6, E7, E8, F4, G2 and .D is any of the Euclidean graphs .[formula...].
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.