Biomass allocation pattern is an important plant characteristic which influences how plants respond to abiotic and biotic heterogeneity. Prior studies indicate that above-ground biomass scales nearly isometrically with respect to below-ground biomass regardless of environment or phyletic affinity. However, such rule has been mostly tested with data on trees and usually without drought stress. Given the importance of this predicted relationship, it should be evaluated for a wider range of species and environmental conditions. Variations of the above- and belowground biomass (MA and MR, respectively) were determined from five sites in north-west China, which compose a natural moisture gradient (aridity index ranging from 0.95 to 1.98). Model Type II regression protocols were used to compare the numerical values of MA vs MR scaling exponents (i.e. slopes of log-log linear relationships). The resulting five scaling exponents were indistinguishable and had a similar, nearly isometric slope (i.e. MA ∞ MR ͌ ¹‧⁰). Significant variation was observed in the Y-intercepts of the five regression curves, because of the absolute differences in MA or MR. These results support prior allometric theory, which reveals an isometric relationship between above- and below-ground biomass, and may provide a suitable method to estimate the regional below-ground biomass based on the direct aboveground measurements.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.