Deblending of simultaneous-source seismic data is becoming more popular in seismic exploration since it can greatly improve the efciency of seismic acquisition and reduce acquisition cost. At present, the deblending methods of simultaneous-source seismic data are mainly divided into two types: fltering method and sparse inversion method. Compared with the fltering method, the sparse inversion method has higher precision, but the selection of its parameter value mainly depends on experience, which is not suitable for large-scale seismic data processing. In this paper, an adaptive iterative deblending method based on sparse inversion is proposed. By improving the original iterative solution method of regularization inversion model, the efective signal and blending noise are weakened simultaneously in the iterative process, so that the energy intensity of blending noise is consistent with that of the efective signal in each iterative, so as to ensure the consistency of the regular parameter calculation method of each iteration. By analyzing the distribution of coefcients in the curvelet domain of pseudo-deblending data and blending noise, it is concluded that the value of regular parameters is the maximum amplitude of residual pseudo-deblending data in the curvelet domain multiplied by a coefcient between 0 and 1. In the process of iterative deblending, the regularized parameters are obtained adaptively from the data itself. It not only ensures the accuracy of the calculation results, but also improves the calculation efciency, which is suitable for large-scale seismic data processing.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.