Vitellogenesis in Khaxvia armeniaca was examined by means of transmission electron microscopy (TEM) and cytochemical staining with periodic acid-thiosemicarbazide-silver proteinate (PA-TSC-SP) for specific detection of glycogen at the ultrastructural level. Mature vitelline follicles consist of cells in various stages of development, progressing from immature cells of gonial type near the periphery to mature vitellocytes towards the centre. Maturation of vitelline cells is characterized by: (1) increase in cell volume; (2) increase in nuclear surface area restoring the N/C ratio; (3) nucleolar transformation; (4) extensive development of large parallel cisternae of GER, the shell-protein producing units; (5) development of Golgi complexes engaged in shell-granule/shell-globule vitelline material formation and package; (6) formation and storage of glycogen in the cytoplasm; (7) simultaneous, independent formation and storage of intranuclear glycogen; (8) continuous fusion of small shell-granules into larger shell-globules that fuse into large shell-globule clusters with a progressive increase in the number and size of the latter; and (9) degeneration of GER in the medial layer of vitellocyte cytoplasm with degenerative changes and accumulation of glycogen and shell-globule clusters within the cytoplasm, associated with a massive accumulation of glycogen in the nucleus. The functional significance of the large amount of nuclear and cytoplasmic glycogen and numerous shell-globule clusters is analysed. The ultrastructural aspect of vitellogenesis is compared with that in other monozoic and polyzoic cestodes. Conclusions concerning the interrelationships of vitellogenesis patterns and ultrastructural cytochemistry of mature vitellocytes to the various types of embryogenesis, are drawn and discussed.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.