Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  interlaminar shear stress
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
By using the linear IFRM theory, interlaminar shear stresses are estimated for a fiber-reinforced laminated beam subjected to a line force. The analysis for this estimation is fully three-dimensional. The beam has three layers. Its core is reinforced in the width direction, whereas its skins in the longitudinal direction. The skins are also assumed to have infinitesimal thickness for the sake of analytical simplicity. In spite of this assumption, inextensibility of the skin layers is valid, since the IFRM theory postulates that the materials are completely inextensible in fiber directions. The analytical results explain very well the observations of delamination shapes and justify applicability of various beam theories to the theoretical analysis of the observations in beam impact tests by use of a line nose impactor. It is also shown that the IFRM theory can explain the observed slight deviation of the delamination from the interface at its early stage.
EN
Purpose: Fiber metal laminates (FML) are a new composite, particularly the CAJRAL type laminate, consisting of aluminium and a carbon/jute/epoxy composite. The present work aims to develop low-density Fiber metal laminates (FML) with good mechanical properties for aerospace applications. Design/methodology/approach: FML combines the good characteristics of metal, such as ductility and durability, with the benefits of fibre composite materials, such as high specific strength, high specific stiffness, good corrosion resistance and fatigue resistance. The present work introduces an FML consisting of aluminium and Carbon/Jute/epoxy layers. The FML was produced by the hand lay-up technique. The aluminium sheets were surface-treated with the sobbing method. Two combinations of laminate sequencing were selected: Ca 0°/Ca 45°/Al/Ju 45° and Ca 0°/Al/Ca 0°/Al/Ju 0°. Findings: The structure characterisation after bending tests is shown and discussed. The three point-bending tests are conducted according to ASTM D 2344 standard specifications. Sample-1 (Ca 0°/Ca 45°/Al/Ju 45°/Ju 45°/Al/Ca 45°/Ca 0°) is a better result. Research limitations/implications: Preliminary studies have shown that the metal layers in the laminates and the composite carbon layer, particularly in the bend area of the laminate, significantly impact the nature of the damage. Laminate indicates the complexity of the degradation process of these materials. Practical implications: The orientation of the reinforcing fibres influences the degree of the laminate structure and affects the ability to form laminates. An important factor influencing the properties of the laminate as a whole is to provide high adhesive properties of the composite-metal connections. Originality/value: By replacing aluminium with jute. It is observed that the tensile and flexure stresses of the CAJRAL with Ca 0°/Ca 45°/Al/Ju 45°/Ju 45°/Al/Ca 45°/Ca 0° are more compared with Ca 0°/Al/Ca 0°/Al/Ju 0°/Ju 0°/Al/Ca 0°/Al/Ca 0°.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.