Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  intelligent platform
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The article presents a solution based on a cyber-physical system in which data collected from measuring sensors was analysed for prediction in the production process control system. The presented technology was based on intelligent sensors as part of the solution for Industry 4.0. The main purpose of the work is to reduce data and select the appropriate covariate to optimise modelling of defects using the Cox model for a specific mechanical system. The reliability of machines and devices in the production process is a condition for ensuring continuity of production. Predicting damage, especially its movement, gives the ability to monitor the current state of the machine. In a broader perspective, this enables streamlining the production process, service planning or control. This ensures production continuity and optimal performance. The presented model is a regressive survival analysis model that allows you to calculate the probability of failure occurring over a given period of time.
PL
Artykuł przedstawia rozwiązanie oparte na systemie cyber-fizycznym, w którym analizowano dane zbierane z czujników pomiarowych do predykcji w systemie kontroli procesów produkcyjnych. Przedstawiona technologia została oparta na inteligentnych czujnikach pomiarowych jako element rozwiązania dla Przemysłu 4.0. Głównym celem pracy jest redukcja danych i wybór odpowiedniego kowariantu w celu optymalizacji modelowania usterek za pomocą modelu Coxa dla konkretnego układu mechanicznego. Niezawodność pracy maszyn i urządzeń w procesie produkcyjnym jest warunkiem zapewnienia ciągłości produkcji. Przewidywanie uszkodzenia, a zwłaszcza jego momentu daje możliwość monitorowania bieżącego stanu maszyny. W szerszej perspektywie umożliwia to usprawnienie procesu produkcji, planowania serwisu, czy kontroli. Zapewnia to utrzymanie ciągłości produkcji i optymalnej jej wydajności. Przedstawiony model jest regresywnym modelem analizy przeżycia, który pozwala na obliczanie prawdopodobieństwa wystąpienia awarii w określonym czasie.
EN
The article presents a part of cyber-physical system for acquiring, processing and controlling from measurement data. The technology was based on, intelligent measurement sensors, internet of Things as a solution for Industry 4.0. The aspect raised in the article concerns data reduction and selection of an appropriate covariant in the modeling optimization of modeling faults by the Cox model for a specific mechanical system.
PL
Artykuł przedstawia część cyber-fizycznego systemu do zbierania, przetwarzania i sterowania przy pomocy informacji pochodzącej z danych pomiarowych. Technologia ta została oparta na inteligentnych czujnikach pomiarowych z użyciem internetu rzeczy jako rozwiązania dla Przemysłu 4.0. Aspekt poruszony w pracy dotyczy redukcji danych i wyboru odpowiedniego kowariantu w optymalizacji modelowania usterek modelem Coxa dla konkretnego układu mechanicznego.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.