In the paper a simple unsupervised monitoring method of rotary machines is proposed. The method consists of three stages - multi-reference preliminary analysis of the vibration signals, auto-reference preliminary analysis and probabilistic analysis of the signals. The method was tested by using signals from eight simulated machines. The efficiency of the method has been positively verified.
PL
W niniejszej publikacji prosta proponujemy prostą metodę nienadzorowanego monitoringu maszyn wirnikowych. Metoda jest trzystopniowa - wieloreferencyjna wstępna analiza sygnałów drganiowych, autoreferencyjna wstępna analiza oraz probabilistyczna analiza sygnałów. Metoda została przetestowana na ośmiu symulowanych maszynach. Skuteczność metody została pozytywnie zweryfikowana.
With the growing number of city vehicles, traffic management is becoming a persistent challenge. Traffic bottlenecks cause significant disturbances in our everyday lives and raise stress levels, negatively impacting the environment by increasing carbon emissions. Due to the population increase, megacities are experiencing severe challenges and significant delays in their day-to-day activities related to transportation. An intelligent traffic management system is required to assess traffic density regularly and take appropriate action. Even though separate lanes are available for various vehicle types, wait times for commuters at traffic signal points are not reduced. The proposed methodology employs artificial intelligence to collect live images from signals to address this issue in the current system. This approach calculates traffic density, utilizing the image processing technique YOLOv4 for effective traffic congestion management. The YOLOv4 algorithm produces better accuracy in the detection of multiple vehicles. Intelligent monitoring technology uses a signal-switching algorithm at signal intersections to coordinate time distribution and alleviate traffic congestion, resulting in shorter vehicle waiting times.
W artykule zaprezentowano metodykę przetwarzania danych obrazowych wykorzystywaną do analiz czasowych i przestrzennych w rozproszonym systemie wizyjnym. Poprawność działania zaprojektowanego systemu uwarunkowana jest kalibracją układu wizyjnego za pomocą dedykowanego znacznika pomiarowego. Operacja ta dzięki wyznaczeniu orientacji przestrzennej każdego z modułów akwizycji obrazu umożliwia modelowanie przestrzeni pomiarowej oraz usprawnia procedurę wykrywania, lokalizacji i analizy ruchu obiektów przemieszczających się w analizowanym obszarze. Proponowane rozwiązanie może przyczynić się do rozszerzenia funkcjonalności dynamicznie rozwijającego się tzw. "Inteligentnego monitoringu."
EN
Development of digital image acquisition devices of increased computing power enables implementing more sophisticated algorithms in intelligent image analysis. It results in huge amounts of data that need to be processed and relevant information should be extracted from them. Most intelligent systems restrict their analysis of the "observed" scene to the image coordinates of individual cameras. However, you can go a step further in this type of analysis. If a distributed vision system can be parameterized, it is possible to perform space-time analysis of events in relation to the entire vision system (and monitored by the area), not just a single camera. The integrity of the designed system is determined by calibration of the video by using a dedicated measurement marker. This operation through the appointment of the spatial orientation of each image acquisition module allows modelling the measuring space and improves the procedure for detection, localization and motion analysis of objects moving in the analysed area. The paper presents configuration and methodology of image data processing of a distributed vision system which performed preliminary time - space analysis of the recorded video. It also describes algorithms used for calibrating and testing a position detector and positioning objects within the test scene. The proposed distributed monitoring system provides new opportunities for the market.
The analysis of the problem of innovative transformation of power supply networks of railways made it possible to scientifically substantiate the direction of research related to an optimal strategy for computer monitoring and intellectualization of the processes of power supply of traction substations of railways. Conceptual approaches to the formation of a new model of intellectualization of power supply networks have been developed. Differential models of high organization of synchronous vector measurements are proposed, allowing to determine the comprehensive information content of the primary data. Based on the concept of smart energy, a set of differential models and methods of harmonic and correlation analysis of anomalous and transient processes occurring in power systems has been developed. The REGINA computer system has been designed and manufactured to carry out, in real-time, intelligent monitoring, diagnostics, identification of accidents, optimization of power consumption and expanding the range of market services in managing railway power supply networks. The REGINA system complies with the requirements of ISO 9001: 2015 and the German certification body DOS. Many actual results obtained during the operation of the REGINA on the railways are presented.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.