Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  intelligent decision support system
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
100%
EN
A project portfolio is referred to as an optimal combination of specified projects to best achieve defined goals of an enterprise. The goals may imply either economic and business strategies, or technical strategies. This paper presents an idea of project portfolio management in intelligent decision support systems (IDSS), which emphasizes on the problem of resource allocation, in particular cash. A rational way of distributing cash among different projects is modeled. We propose a concept of cash-flow dynamics module, which can be plugged into IDSS. The IDSS allows project managers to make decisions regarding the order of priority for projects' launching times based on risk and profitability of projects. This paper describes how this module can support cash-flow management processes, from budgeting for future periods to tracking real-time cash flow. Based on an analogy between cash-flow processes and physical flow of fluid, a cash-flow dynamics model is introduced. The theory of Bernoulli principle for cash-flow planning and tracking is applied.
2
Content available Decision analysis in project management process
100%
EN
Very often we complain about the decisions that were previously made. Yet the fact is that the decisions made were based on the knowledge we had before. By now we have gained more knowledge. Therefore the common problem of making decisions is that decisions are not made reliable enough because parameters in risk assessment and supply chain management are underestimated or not robust enough. In this paper we propose a framework that will try to predict future situations collectively and increase the reliability of decision making. Project management is the art of making right decision. Project managers are faced by huge array of choices. Decision analysis is used in strategic planning, operational management, and other areas of business. Decision analysis helps companies to determine optimal exploration and production strategies with uncertainties in cost, prices, and exploration prospects. This paper describes project management steps and the way they can be supported by Intelligent Decision Support system (IDSS). The main parameters assessed are total cost of the projects, time of the project total fulfilment, number of subcontractors, location factors, and etc. IDSS will enable to collect data, propose possible alternative decisions, and provide risk assessment.
EN
Methods of developing and functioning of intelligent decision support systems based on precedents applying adaptive ontology that are part of intelligent agents are analyzed. Method of distance defi nition between precedens and current situation based on adaptive ontology is developed. Using mathematical tools of the dynamic programming for modelling of intelligent system functioning is considered. Simplifying the task model is proposed to weigh signs of ontology concepts. Examples of such problems for six processes concerning metal structures protection and maximizing their lifetime are presented.
PL
W artykule zostały przedstawione baza danych oraz baza wiedzy, które stanowią integralną część Inteligentnego Systemu Wspomagania Decyzji, opracowywanego dla potrzeb przedsiębiorstwa produkcyjnego w przemyśle szklarskim. Oba moduły wykorzystane zostaną w systemie doradczym, który ma służyć klasyfikacji wad produktu (tutaj opakowań szklanych, np. butelki, słoiki) oraz doboru odpowiedniej metody (najbardziej korzystnej) sposobu ich eliminacji. Omówiono również przeznaczenie systemu oraz sam proces technologiczny.
EN
In the paper there has been presented database and base knowledge which are an integral part of the Intelligent Decision Support System, created for the needs of manufacturing companies in the glass industry. Both modules will be used in the decision system to serve the classification of defects in the product (here presented – glass containers, bottles, jars) and the selection of appropriate method (most preferred) way to eliminate them.
PL
Wzrost skali produkcji i poziomu technologicznego spowodowały, że przedsiębiorstwa przemysłowe stały się złożonymi systemami, które wymagają stosowania nowoczesnych, coraz bardziej precyzyjnych metod podejmowania decyzji. Metody te wykorzystują techniki sztucznej inteligencji, które pozwalają przewidywać, wyjaśniać i sterować procesami decyzyjnymi. Artykuł koncentruje się na omówieniu zagadnień związanych z podejmowaniem decyzji w przedsiębiorstwach oraz pozyskiwaniem wiedzy. Przedstawiono strukturę Inteligentnego Systemu Wspomagania Decyzji (ISWD) oraz jego umiejscowienie w procesie technologicznym w przedsiębiorstwie. Na koniec podjęto próbę oceny takich systemów.
EN
The increase in production scale, technology level entailed that industrial companies have become complex systems that require the use of modern and more accurate methods of decision making. These methods use artificial intelligence techniques, which allows to predict, explain and control the decision making processes. This article focuses on issues related to decision-making and knowledge acquisition in enterprises. The paper presents the structure Intelligent Decision Support Systems its position in the technological process in the company. And finally an attempt to assess such systems was made.
EN
Some problems of design of the fuzzy system rule base for Intelligent Decision Support System (IDSS) are considered. The fuzzy system rule base used at decision making about an accommodation of industrial and social objects in territories, dangerous from the point of view of hydrometeorological factors, is the object of research. An approach to determining the parameter of the fuzzy model rule base completeness is presented. Influence of the fuzzy model input vector structure on decisions offered by IDSS is investigated. Research is carried out with use of the package Matlab Fuzzy Logic.
PL
W artykule autorka rozpatruje wybrane zagadnienia budowy rozmytej bazy reguł Inteligentnego Systemu Wspomagania Decyzji (ISWD) wykorzystującego informację hydrometeorologiczną. Informację hydrometeorologiczną charakteryzuje niepewność i niepełność. Powoduje to trudności w ocenie skutków decyzji podejmowanych na podstawie tej informacji. Jako narzędzie pomocnicze w tym przypadku może służyć ISWD, w którego strukturze zawarte są systemy rozmyte. Jako obiekt badań występuje baza reguł systemu rozmytego, wspomagającego proces podejmowania decyzji o możliwości rozmieszczenia obiektów socjalnych i przemysłowych na terenach zagrożonych niebezpiecznymi czynnikami hydrometeorologicznymi. W artykule autorka przedstawia podejście do określenia wskaźnika kompletności bazy reguł modelu rozmytego oraz wyniki badań wpływu struktury wektora wejścia modelu rozmytego na rozwiązania proponowane przez ISWD. Badania prowadzono przy wykorzystaniu oprogramowania Matlab Fuzzy Logic.
PL
W pracy omówiono zagadnienie modelowania danych na poziomie konceptualnym, które ma kluczowe znaczenie dla użyteczności i jakości projektowanej bazy danych. Przykład modelowania danych na poziomie konceptualnym jest ilustracją problemów, jakie występują w procesie technologicznym przy produkcji opakowań szklanych. Przedstawiony model bazy danych wykorzystany zostanie przy budowie Inteligentnego Systemu Wspomagania Decyzji, opracowywanego dla potrzeb przedsiębiorstwa produkcyjnego w przemyśle szklarskim. System ten będzie służył do klasyfikacji wad produktu (opakowań szklanych) oraz doboru odpowiedniej metody eliminacji wad powstających w trakcie procesu produkcji.
EN
The paper discusses the problem of data modeling on the conceptual level, which is crucial to the usefulness and quality of the proposed database. The example of data modeling is a conceptual illustration of the problems that occur in the technological process in the production of glass packaging. The database model will be used in the construction of an Intelligent Decision Support System developed for the needs of manufacturing companies in the glass industry. This system will be used for classification of product defects (glass containers), as well as choosing the appropriate method of elimination of defects generated during the manufacturing process.
8
Content available remote Manufacturing project management in the conglomerate enterprises supported by IDSS
51%
EN
Purpose: of this paper is to summarize the application study of a general framework of intelligent decision support system (IDSS) to collaborative projects in conglomerate enterprises. In some situations, even with the knowledge of how to find right information and which decision making methods to apply, we do not have enough time to make right decisions at the right time. In this paper, the framework of an IDSS system to support real-time collaboration and enable seamless data exchange is presented. Design/methodology/approach: The important roles of facilitation and organization that the IDSS plays are demonstrated. In the case study, examples of manufacturing projects analysis are given with the known methods, including Analytical Hierarchy Process and Bayes’ rule. Findings: It is demonstrated that IDSS systems can help us to manage information flow, clean data, transform data into knowledge, perform analysis and monitor the effectiveness of manufacturing projects during the whole life cycle. Research limitations/implications: The functionality of the developed framework is limited by the willingness of management style and culture changes in companies, as well as the level of interoperability between commercial software components. Only the essential components that influence the success of the manufacturing projects are considered. Practical implications: Project engineers and managers need to adapt to the new IT-based working environment. Originality/value: New information management model and the framework of IDSS system are proposed. The new collaborative decision making system consists of different parts: management of information flow, preparation of data for decision making, and actual decision making and monitoring of manufacturing projects supported by several methods.
9
Content available remote IDSS used as a framework for collaborative projects in conglomerate enterprises
51%
EN
Purpose: of this paper is to summarize the application study of the general framework of intelligent decision support system (IDSS) to collaborative projects in conglomerate enterprises. Today's market competition requires project managers to make correct decisions fast. In some situations, even with the knowledge of how to find right information and which decision making methods to apply, people do not have enough time to make right decisions at the right time. In this paper, the frame work of an IDSS system to support real-time collaboration and enable seamless data exchange is presented. The IDSS system is able to support the information flow between internal and external sources. Data are shared, prepared, and streamlined to appropriate analytical tools. A case study of manufacturing projects in a specific European shipbuilding conglomerate is used to illustrate the process and usefullness of IDSS in combination with Enterprise Resource Planning (ERP) systems. Design/methodology/approach: A model of internal and external information flows is proposed for enterprise information management. The important roles of facilitation and organization that the IDSS plays are demonstrated. In the case study examples of manufacturing projects analysis are given with the known methods, including Analytical Hierarchy Process and Bayes Rule. Findings: It was found that IDSS is an essential component to enhance decision makings with complex information flows in large conglomerates. Main conclusions is to show what we will achieve through IDSS systems, to show how perform analysis in logical way. Research limitations/implications: The functionality of the developed framework is limited by the willingness of management style and culture changes in companies, as well as the level of interoperability between commercial software components. Practical implications: Project engineers and managers need to adapt to the new IT-based working environment. Intensive use of software tools may become the major challenge for those who cannot absorb information based on the new format of information presentation. Originality/value: The proposed new information management model and the framework of IDSS system enable ease of data sharing and processing by internal and external stakeholders in decision makings. The collaborative decision making consists of different parts: the management of information flow, the preparation of data for decision making, and actual decision making supported by several methods.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.