Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  integral quadratic form
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
100%
EN
Inflations algorithm is a procedure that appears implicitly in Ovsienko’s classical proof for the classification of positive definite integral quadratic forms. The best known upper asymptotic bound for its time complexity is an exponential one. In this paper we show that this bound can be tightened to O(n6) for the naive implementation. Also, we propose a new approach to show how to decide whether an admissible quasi-Cartan matrix is positive definite and compute the Dynkin type in just O(n3) operations taking an integer matrix as input.
2
Content available remote A Strong Gram Classification of Non-negative Unit Forms of Dynkin Type A
72%
EN
An integral quadratic form q is usually identified with a bilinear form b such that its Gram matrix with respect to the canonical basis is upper triangular. Two integral quadratic forms are called strongly (resp. weakly) Gram congruent if their corresponding upper triangular bilinear forms (resp. their symmetrizations) are equivalent. If q is unitary, such upper triangular bilinear form is unimodular, and one considers the associated Coxeter transformation and its characteristic polynomial, the so-called Coxeter polynomial of q with this identification. Two strongly Gram congruent quadratic unit forms are weakly Gram congruent and have the same Coxeter polynomial. Here we show that the converse of this statement holds for the connected non-negative case of Dynkin type A_r and arbitrary corank, and use this characterization to complete a combinatorial classification of such quadratic forms started in [Fundamenta Informaticae 184(1):49-82, 2021] and [Fundamenta Informaticae 185(3):221-246, 2022].
EN
In 1970 a negative solution to the tenth Hilbert problem, concerning the determination of integral solutions of diophantine equations, has been published by Y. W. Matiyasevich (see Matiyasevich, 1970). Despite this result, we can present algorithms to compute integral solutions (roots) for a wide class of quadratic diophantine equations of the form q(x) = d, where q : Zn → Z is a homogeneous quadratic form. We will focus on the roots of one (i.e., d = 1) of quadratic Euler forms of selected posets from Loupias list (see Loupias, 1975). In particular, we will describe the roots of positive definite quadratic forms and the roots of quadratic forms that are principal (see Simson, 2010a). The algorithms and results we present here are successfully used in the representation theory of finite groups and algebras.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.